Биогеохимический цикл азота в природе. Биогеохимические круговороты

Каждый химический элемент, совершая круговорот в экосистеме, следует по своему особому пути, но все круговороты приводятся в движение энергией, и участвующие в них элементы попеременно переходят из органической формы в неорганическую и обратно. Рассмотрим круговороты некоторых химических элементов с учетом особенностей поступления их из обменного фонда в резервный и возврата в обменный фонд.

Цикл азота. Безусловно, это один из самых сложных и одновременно самых уязвимых круговоротов (рис. 11.5).

Несмотря на большое число участвующих в нем организмов, круговорот обеспечивает быструю циркуляцию азота в различных экосистемах. Как правило, в количественном отношении азот следует за углеродом, вместе с которым он участвует в образовании белковых соединений. Азот, входящий в состав белков и других азотсодержащих соединений, переводится из органической формы в неорганическую в результате деятельности ряда хемотрофных бактерий. Каждый вид бактерий выполняет свою часть работы, окисляя аммоний до нитритов и далее до нитратов. Однако нитраты, доступные для растений, «ускользают» от них в результате деятельности денитрифицирующих бактерий , которые восстанавливают нитраты до молекулярного азота.

Цикла азота характеризуется обширным резервным фондом в атмосфере. Воздух по объему почти на 80% состоит из молекулярного

Рис. 11.5.

азота (N 2) и представляет собой крупнейший резервуар этого элемента. В то же время недостаточное содержание азота в почве часто лимитирует продуктивность отдельных видов растений и всей экосистемы в целом. Все живые организмы нуждаются в азоте, который используют в различных формах для образования белка и нуклеиновых кислот. Но лишь немногие микроорганизмы могут использовать газообразный азот из атмосферы. К счастью, фиксирующие азот микроорганизмы преобразуют молекулярный азот в доступные растениям ионы аммония. Кроме того, в атмосфере постоянно происходит образование нитратов неорганическим путем, но это явление играет лишь вспомогательную роль по сравнению с деятельностью нитрифицирующих организмов.

Цикл фосфора. Фосфор - один из наиболее важных биогенных элементов. Он входит в состав нуклеиновых кислот, клеточных мембран, ферментов, костной ткани, дентина и т.п. По сравнению с азотом он встречается в относительно немногих химических формах.

В обменный фонд фосфор поступает двумя путями (рис. 11.6). Во- первых, за счет первичной экскреции консументов и, во-вторых, в процессе разрушения мертвого органического вещества фосфатреду- цируюшими бактериями, которые переводят фосфор из органической формы в растворимые фосфаты: РО^ - , НРО^ - и HjPO^". Таким образом, редуценты переводят фосфор из органической формы в неорганическую, не окисляя его.

Рис. 11.6. Биогеохимический цикл фосфора: I - обменный фонд; II - резервный фонд

Особенность биогеохимического цикла фосфора заключается в том, что в отличие от азота и углерода его резервным фондом является не атмосфера, а горные породы и отложения, образовавшиеся в прошлые геологические эпохи. В связи с этим циркуляция фосфора легко нарушается, так как основная масса вещества сосредоточена в малоактивном и малоподвижном резервном фонде, захороненном в земной коре. Несовершенство биогеохимического цикла фосфора состоит в том, что доступность этого элемента ограничена из-за утечек в глубокие осадки.

Цикл серы. Для серы характерен обширный резервный фонд в земной коре и меньший - в атмосфере и гидросфере (рис. 11.7). В результате такой слаженности обменного и резервного фондов сера не является лимитирующим фактором. Основной источник серы, доступный организмам, - это всевозможные сульфаты. Хорошая растворимость в воде многих сульфатов облегчает доступ неорганической серы в экосистемы. Поглощая сульфаты, растения их восстанавливают и вырабатывают серосодержащие аминокислоты (метионин, цистеин, цистин). Известно, что эти аминокислоты играют важную роль при формировании третичной структуры белков, образуя дисульфидные мостики между различными участками полипептидной цепи.

Рис. 11.7.

I - обменный фонд; II, III - резервные фонды

Аналогично нитратам и фосфатам, сульфаты, основная доступная растениям форма серы, восстанавливаются автотрофами и включаются в белки. Органические остатки животных и растений минерализуются, и входящая в их состав восстановленная сера при аэробном разложении окисляется ферментативным путем различными группами хемотрофных микроорганизмов. Подобные процессы осуществляются и в водоемах.

Из сульфопротеинов, содержащихся в почве, гетеротрофные бактерии вырабатывают сероводород. С другой стороны, существуют различные группы хемотрофных бактерий, способных опять окислять сероводород до сульфатов, что вновь увеличивает запас серы, доступной продуцентам. Подобные бактерии не нуждаются в свете. Например, хемотрофные бактерии Thiobacillius синтезируют органические вещества благодаря энергии, получаемой во время окисления сероводорода до сульфатов в среде, где царит вечная тьма.

Последняя фаза круговорота серы полностью осадочная. Она заключается в выпадении в осадок этого элемента в анаэробных условиях в присутствии железа. Различные этапы этого процесса, особенно обратимые, в дальнейшем позволяют использовать запасы осадочных пород. Таким образом, процесс заканчивается медленным и постепенным накоплением серы в глубоко лежащих осадочных породах.

Цикл углерода. Углерод - основной строительный материал молекул важных для жизни органических соединений (углеводы, жиры, белки, нуклеиновые кислоты и др.). Этот биоэлемент участвует в цикле с небольшим, но подвижным резервным фондом в атмосфере (рис. 11.8), откуда растения его получают в форме диоксида углерода. Именно диоксид углерода, атмосферный и растворенный в воде, - единственный источник неорганического углерода, из которого в процессе фотосинтеза вырабатываются все органические соединения, составляющие живую клетку. Движение углерода по цепям питания экосистемы тесно связано с переносом энергии - недаром конечными продуктами жизнедеятельности служат диоксид углерода и вода.

В почве очень часто цикл углерода замедляется. Органические вещества минерализуются не полностью, а трансформируются в сложный комплекс производных органических кислот, образующих массу темного цвета, так называемый гумус. При любых условиях органический комплекс не может быть полностью минерализован аэробным путем и поэтому накапливается в различных осадочных породах. Тогда наблюдается стагнация или блокирование круговорота углерода - примером тому служит накопление угля, нефти и других углеводородных ископаемых.

Рис. 11.8.

I - обменный фонд; II - резервный фонд

Твердые формы углерода продуценты усваивать не могут, поэтому единственным его источником для растений служит атмосферный воздух. Сейчас запасы углерода в атмосфере в виде С0 2 относительно невелики. Благодаря буферной системе карбонатного цикла моря круговорот углерода приобретает устойчивость, но он все-таки уязвим из-за небольшого объема резервного фонда.

В круговоротах участвуют не только биогенные элементы, но и многие загрязняющие вещества. Некоторые из них циркулируют в окружающей среде и имеют тенденцию накапливаться в организмах. В таких случаях концентрация какого-либо загрязняющего вещества, обнаруженного в организмах, нарастает по мере прохождения его вверх по пищевой цепи, так как организмы быстрее поглощают загрязняющие вещества, чем выделяют их. Ртуть, например, может содержаться в воде и придонном иле в относительно безвредных концентрациях, тогда как ее содержание в организме водных животных, имеющих раковину или панцирь, может достигать летального для них уровня. Действие пестицидов, таких как ДДТ, основывается на сходном принципе: содержание их в воде может быть столь незначительным, что выявить их практически не удается, однако чем выше трофический уровень, на котором находится данный организм, тем больше концентрация пестицида в его тканях. Это явление известно под названием биологического усиления, или биологического накопления.

Чтобы жизнь продолжала существовать, химические элементы должны постоянно циркулировать из внешней среды в живые организмы и обратно, переходя из цитоплазмы одних организмов в усвояемую для других организмов форму. Важнейшее свойство потоков в экосистемах - их цикличность. Вещества в экосистемах совершают практически полный круговорот, попадая сначала в организмы, затем в абиотическую среду и вновь возвращаясь к организмам.

Критическими моментами биогеохимических циклов являются захват (уровень продуцентов) и возврат (уровень редуцентов) веществ из физической среды. Эти моменты связаны с реакциями восстановления и окисления. Восстановление химических веществ осуществляется в конечном итоге за счет энергии солнечного излучения. На каждом этапе переноса энергии происходит ее рассеивание, заканчивающееся на уровне редуцентов, которые окисляют элементы до состояния, в котором они уже могут быть захвачены продуцентами. В целом на уровне обменного фонда биогеохимический круговорот может быть представлен системой ступенек, в пределах каждой из которых осуществляется своя часть процесса окисления (рис. 11.9).

Рис. 11.9.

На пути от консументов к продуцентам действуют редуценты, представленные различными группами хемотрофных бактерий, которые окисляют соединения биогенных элементов до форм, доступных продуцентам. В цикле азота и серы на этом этапе включаются гетеротрофные бактерии, восстанавливающие соединения и делающие их таким образом недоступными для растений. В цикле серы деятельность гетеротрофных бактерий уравновешивается активностью сразу нескольких групп аэробных и анаэробных хемотрофов. В цикле азота энергетический барьер нивелируется благодаря активности азотфик- сирующих микроорганизмов.

  • Денитрифицирующие бактерии используют нитраты в качестве источника кислорода.

Так же, как круговорот углерода и другие круговороты, охватывает все области биосферы. В круговороте соединений азота ключевое значение принадлежит микроорганизмам: азотфиксаторам, нитрификаторам и денитрификаторам. Другие же организмы оказывают влияние на круговорот азота лишь после того, как он войдет в состав их клеток. Как известно, бобовые и представители некоторых родов других сосудистых растений (например, ольха, араукария, лох) фиксируют азот с помощью бактерий-симбионтов. То же наблюдается и у некоторых лишайников, фиксирующих азот с помощью симбиотических сине-зеленых водорослей. Очевидно, что биологическая фиксация молекулярного азота свободноживущими и симбиотическими организмами происходит и в автотрофном, и в гетеротрофном звеньях экосистем.
Из огромного запаса азота в атмосфере и осадочной оболочке литосферы в круговороте его участвует только фиксированный азот, усваиваемый живыми организмами суши и океана. В категорию обменного фонда этого элемента входят: азот годичной продукции биомассы, азот биологической фиксации бактериями и другими организмами, ювенильный (вулканогенный) азот, атмосферный (фиксированный при грозах) и техногенный
Нетрудно заметить, что, за исключением растительности тундры, где содержание азота и зольных элементов примерно одинаково, в растительности почти всех других типов масса азота в 2... 3 раза меньше массы зольных элементов. Количество элементов, оборачивающихся в течение года (т.е. емкость биологического круговорота), наибольшее в тропических лесах, затем в черноземных степях и широколиственных лесах умеренного пояса (дубравах).

Различают три типа азотфиксации:

Свободноживущими бактериями самых разнообразных таксономических групп.

Ассоциативная азотфиксация бактериями, находящимися в тесной связи с растениями (в прикорневой зоне или на поверхности листьев) и использующие их выделения (корневые выделения составляют до 30 % продукции фотосинтеза) как источник органического вещества. Азотфиксаторы живут в кишечнике многих животных (жвачные, грызуны, термиты) и человека (род Escherichia ).

Симбиотическая. Наиболее известен симбиоз клубеньковых бактерий (сем. Rhizobiaceae ) с бобовыми растениями. Обычно происходит корневое заражение, но известны растения, образующие клубеньки на стеблях и листьях.

Созданы бактериальные удобрения (например, нитрагин) для инокуляции (заражения) штаммами клубеньковых бактерий семян бобовых культур, что увеличивает их урожайность. Также для стимулирования процессов азотфиксации полезно вносить в почву небольшие «стартовые» дозы азотных удобрений, в то время как большие их дозы подавляют процесс.

Биогеохимический круговорот углерода в естественных условиях и влияние на круговорот загрязнения среды.

На суше круговорот углерода начинается с фиксации углекислого газа растениями в процессе фотосинтеза. Далее из углекислого газа и воды образуются углеводы и высвобождается кислород. При этом углерод частично выделяется во время дыхания растений в составе углекислого газа. Фиксированный в растении углерод в некоторой степени потребляется животными. Животные при дыхании так же выделяют углекислый газ. Отжившие животные и растения разлагаются микроорганизмами, в результате чего углерод мертвого органического вещества окисляется до углекислого газа и снова попадает в атмосферу. Подобный круговорот совершается и в океане.

История развития биогеохимических циклов азота на планете сложна и противоречива. Азот вошел в состав земной планеты в результате конденсации межзвездного космического протопланетарного вещества, которое включало азот и его различные соединения (NO, NH3, HC3N и др., см. табл. 6).
Радиоактивные разогревы планеты, образование расплавленной мантии сопровождались выделением газообразных соединений азота и накоплением его в первичной атмосфере, в составе которой N2 доминирует («-ДО15 т) и в настоящее время. Остывающая лава, газовые фумаролы вулканов продолжают поставлять в биосферу азот, его окислы, хлористый и углекислый аммоний.
Электрохимические разряды, фотохимические реакции, сверхвысокие температуры и давление способствовали возникновению на планете неклеточных молекулярных форм органических азотистых соединений.
Появление свободно живущих азотфиксирующих бактерий и бактерий гетеротрофов, вероятно, положило начало биогенному обогащению первичной биосферы соединениями азота, образованию аминокислот, белков, минеральных соединений азота (аммонийных, азотнокислых солей). Не исключено, что биогенная фиксация азота предшествовала возникновению фотосинтеза, протекала в бескислородной анаэробной обстановке далекого прошлого и осуществлялась микроорганизмами типа клостридиум. Бактерии этого рода и поныне являются важнейшими агентами фиксации азота в анаэробных условиях.
Биологическая фиксация азота микроорганизмами распространена в природе значительно шире, чем это представлялось 20-30 лет назад. Кроме бактерий группы Rhizobium, фиксирующих азот в клубеньковых образованиях на корнях бобовых растений, широко развита несимбиотическая (ассоциативная) фиксация азота многочисленными гетеротрофными бактериями и грибами (Умаров, 1983). Этот тип фиксации азота осуществляется сотнями видов разнообразных микроорганизмов, проживающих в ризосфере растений, в почве и на поверхности стеблей и листьев (фил- лосфера).
В среднем ассоциативная (несимбиотическая) фиксация азота в экосистемах составляет в. год 40-50 кг/га; но в мировой литературе есть указания на то, что несимбиотическая фиксация азота в условиях тропиков достигает 200-600 кг/га в год (Умаров, 1983). При этом большая часть (gt; 90%) масса азота фиксируется в ризосфере с использованием энергии корневых выделений и отмирающих мелких корешков. Поэтому при наличии покрова растительности почвы всегда фиксируют в несколько раз больше азота, чем почвы чистых паров.
Как установлено исследованиями Умарова (1983), ассоциативная фиксация азота характерна для большинства видов травянистых и многих древесных растений, включая и культурные их формы. Высокой потенциальной способностью фиксации азота в ризосфере отличаются луговые, черноземные и каштановые почвы (90-330 кг/га), а также горно-лесные почвы Кавказа (до 180 кг/га). Только за вегетационный период на полях этот вид фиксации может дать почвам 30-40 кг/га дополнительного азота. Это и не удивительно, так как азотфиксирующие микроорганизмы могут составлять от 20 до 80% их общей численности.
(Существует явная положительная связь между процессами фиксации азота микроорганизмами и фотосинтезом растений в экосистемах. Чем выше продуктивность фотосинтеза растений, тем больше азота фиксируется в почвах. \Это важнейший механизм биогеохимии азота в биосфере и в земледелии.
\ Велика в биогеохимии азота роль синезеленых водорослей, многочисленные виды которых также обладают способностью фиксировать азот одновременно с процессом фотосинтеза. Синезеленые водоросли (Cyanophyta) обогащают азотом почвы, особенно орошаемые рисовники, речные, озерные и болотные воды и наносы. Но они живут и на поверхности голых скал или пустынных почв (табл. 21).
Развитие растительного покрова и связанных с растениями микроорганизмов значительно усилило вовлечение азота атмосферы в состав биомассы. Усложнение форм жизни на планете вызвало удлинение пищевых цепей, накопление живой и мертвой органики на суше и в океане. Это создало возможность длительного существования органических соединений азота в биосфере и литосфере. Особенно велика в этом роль травянистых растений. Наземная и подземная части травянистой растительности ежегодно потребляют от 20-25 до 600-700 кг/га азота (обычно корни содержат в 2-6 раз больше азота, чем наземная часть). При этом суммарная биомасса, как правило, содержит углерода в 10-50 раз больше, чем азота. Все это подтверждает огромную общую роль углерода и азота в создании фитомассы (Титлянова, 1979). Но соединения азота легко выщелачиваются из тканей растений влагой дождей. Поступая в почвы, они повторно потребляются растениями.
Насколько сложны и мало еще изучены биогенные циклы азота, свидетельствуют установленные факты передачи соединений азота от растения к растению (одного и различных видов) через корневые выделения в почву, а возможно, прямым контактом корешков. Этот удивительный механизм показывает, как ’’экономны” растения в азотном питании. Вероятно, это явление существует и в биогеохимии других элементов.
Как известно, белковость зерна пшеницы и содержание в них азота возрастает с уменьшением атмосферных осадков в степях Русской равнины. Это уже установлено и для содержания общего азота в биомассе травянистых растений. В степных условиях содержание азота в сухой биомассе трав достигает 2-2,6%; при увеличении влажности оно снижается до 1-1,5%.
Все эти факты свидетельствуют о громадной роли растительного покрова (особенно трав) и микроорганизмов в биогеохимии азота на суше. Развитие растительного покрова, возникновение почвообразовательного процесса (300-400 млн. лет назад), формирование гумусовой оболочки и почвенного мелкозема, его снос и накопление в виде толщ осадочных пород расширили процесс перевода азота атмосферы в биосферу, подняв его содержание в последней до уровня п 1015 т.
В то же время необходимо подчеркнуть, что возврат азота в атмосферу через денитрификацию - столь же универсальный процесс, как фиксация


и нитрификация. Этим процессом обеспечивается глобальный круговорот азота на планете.
Окислительно-восстановительные условия внутри почв весьма гетеро- генны. Даже в аэрированных почвах есть участки с дефицитом кислорода, где может происходить денитрификация. Обилие свежей подвижной органики и пересыщение почв влагой всегда резко усиливают процессы денитрификации после дождей, при заболачивании, при орошении. Еще более выражена денитрификация в водных ландшафтах (болота, озера, эстуарии и т.д.).
Этот направленный общепланетарный биогеохимический процесс имеет полициклический характер. Преобладающая часть фиксированного в природе азота через микроциклические повторные превращения, нитрификацию и денитрификацию в конечном счете возвращается в виде молекулярного газообразного азота (N2) в атмосферу. Но по мере становления биосферы нарастали продолжительность существования и размеры массы органических и минеральных биогенных соединений азота на планете. Увеличилось количество погребенных органических осадков. Продолжительность отдельных микроциклов общеземного биогеохимического круговорота азота колеблется в настоящую эпоху от малой (дни, недели, месяцы) в тканях микроорганизмов до значительной (годы) в экосистемах травянистой растительности и до большой (десятилетия, столетия, тысячелетия) в древесных экосистемах и в почвенном гумусе. Полные земные циклы азота, оказавшегося в осадках рек, озер, морей, в горючих ископаемых земной коры, охватывают время порядка десятков тысячелетий, сотен тысяч и миллионов лет.
Естественные биогеохимические циклы азота (как и углерода) в биосфере были ’’почти замкнутыми”, но имели характер направленного расширенного воспроизводства запасов в биосфере. Биосфера не только не отдавала полностью захваченные массы азота и углерода, но прогрессивно увеличивала их суммарные запасы в фиксированной форме (в гумусе, торфе, в массе ископаемых углей, нефти, сланцах, битумах и т.д.) .
Антропогенная эпоха внесла заметные изменения в сложившиеся природные циклы азота. Главное, что произошло и происходит, это (кроме земле-

Рис. 47. Мировое производство удобрений (данные ФАО)
1 - общее; 2 - азот; 3 - фосфор; 4 - калий

делил) появление в биосфере нового антропогенного промышленного механизма фиксации масс азота в виде десятков миллионов тонн азотных удобрений, а также поступление в окружающую среду окислов азота от больших масс сжигаемых ископаемых топлив (теплоцентрали, транспорт^ авиация, ракеты). Техногенные источники соединений азота в биосфере быстро растут, удваиваясь каждые 6-7 лет. Уже в 70-80-х годах XX в. ежегодно в мире производится (в расчете на азот) 50-60 млн. т/год азотных удобрений (табл. 22). В начале XXI в. эта величина может достигнуть 100-150 млн. т/год. Вероятно, к этому времени техногенный приток азота в биосферу может сравняться со всеми биогенными формами его поступления или превысить их (рис. 47).
В антропогенную эпоху, особенно в современный период, процесс обогащения окружающей среды соединениями азота заметно усилился. Как нами отмечалось ранее, происходит процесс техногенной азотизации окружающей среды, сопровождаемый сложным комплексом положительных (рост урожаев, увеличение доли белков в питании) и отрицательных (канцер, метогемоглобинемия, увеличение кислотности почв и атмосферных осадков) последствий. Уничтожение лесов, степей (и микоризы), замена бобовых злаками, разрушение гумусовых горизонтов почв, богатых микрофлорой, сокращение поверхности почв также вызвали дополнительные изменения в биогеохимии азота в биосфере. Все эти изменения, часто противоположного характера, не изучены и не оценены количественно. По-видимому, все же намечается тенденция уменьшения роли биогенной фиксации азота в общем круговороте его на планете.
Именно на этом фоне нарушений нормального круговорота азота в природе минеральные удобрения почв внесли отмеченные выше изменения

Таблица 22. Производство минеральных удобрений на 1980 г., тыс. т (по данным ФА О)


Континенты и страны

Азот

Фосфор

производство

потребление

производство

Северная Америка

11 829

10 490

9 212

Западная Европа

11 137

9 418

5 881

Всего в капиталистических

25 154

21 287

17 642

странах




Африка

167

494

673

Латинская Америка

1 343

2 488

1 532

Всего в развивающихся странах

7 115

10 165

3 982

Всего в социалистических странах

21 527

19 993

10 856

Итого в мире

53 795

51 445

32 480

*В туках это составляет 350-400 млн. т/год.



в приходные статьи баланса азота и в географию его распределения, а также подняли общий уровень концентрации нитратов и аммонийных солей в почвах и водах. Но еще более серьезным фактором нарушения баланса, уровня концентрации и форм соединения азота в атмосфере и особенно в гидросфере и почвах оказалось современное топливно-энергетическое и транспортное хозяйство.
По ориентировочным данным, эмиссия аммиака и различных окислов азота при сжигании угля, нефти, мазута, бензина, торфа, сланцев и т.д. вместе составляет ежегодно около 200-350 млн. т в виде газов и аэрозолей. Окисление аммиака и окислов азота приводит к образованию главным образом азотной кислоты и отчасти аммонийных солей, выпадающих на сушу и поверхность океана. Если эти цифры преувеличены даже в два раза, все же приходится признать, что эмиссия соединений азота в атмосферу уже стала заметным компонентом в приходных статьях азотного цикла на нашей планете.
В свете этих фактов необходимо глубже понять будущие нужды земледелия в азотных удобрениях, пути глобальной, воздушной и водной миграции соединений азота на планете и выяснить области, где преимущественно происходит накопление азотнокислых и аммонийных соединений. Это тем более необходимо, что выбросы окислов азота в атмосферу будут продолжаться и даже увеличиваться. Уже установлены факты выпадения подкисленных атмосферных вод в Канаде, Скандинавии, США, что сопровождается снижением pH почв и местных вод (обычно под влиянием совместных выпадов с разбавленными растворами серной кислоты). Подкисление среды будет усиливать выветривание минералов, вынос из почв кальция, магния и других элементов питания растений, что увеличит потребность в известковании полей.
Следует указать еще на один фактор нарушения нормального уровня концентрации и круговорота азота в природе. Это отходы индустриального животноводства и птицеводства, а также отбросы и стоки нечистот современных крупных городов. Отходы и стоки этого происхождения очень

Фосфор

Калий
/>Всего

потребление

производство

потребление

производство

потребление

5 660

8 673

5 984

29 714

22 134

6 059

5 340

5 476

22 358

20 952

14 308

14 666

12 578

57 461

48 173

698

_

222

841

1113

2 274

11

1 464

2 886

6 223

5 567

И

2 889

11 108

18 622

10 632

11 826

9 320

44 209

39 945

30 508

26 503

2 4787

112 778

106 740*

велики. В мире насчитывается более 3 млрд, голов скота, производящих огромные количества отходов. Современные птицефабрики, предприятия индустриального животноводства, города создают многочисленные очаги аномально высокого содержания азота и фосфора в виде органических и минеральных соединений, которые локально пресыщают почвы, ручьи, реки, озера, устья рек и эстуарии. Иногда в таких почвах содержание N-N03 достигает 400 частей на миллион (ppm), a N-NH4 - до 2200 ppm.
По мнению ученых, городские стоки, отходы животноводства и эрозия почв играют не меньшую, а иногда и большую роль в загрязнении почв и вод соединениями азота, до токсичного уровня (Cooke, Williams, 1970).
Повышение концентрации соединений азота в природных водах является тревожным фактом. В речных водах лесных областей умеренного климата содержание нитратов достигает 0,3-0,5 мг/л, а аридного климата - 1,2- мг/л. В дренажных водах оросительных систем концентрация N03 обычно около 5-6 мг/л, но бывает и 10-15 мг/л. В почвенных растворах засоленных орошаемых почв наблюдались концентрации N03 до 100- 300 мг/л. В грунтовых водах иногда бывает концентрация нитратов порядка 10-15 и даже 50-100 мг/л. За 25 лет (1945-1970 гг.) регулярных наблюдений в штате Иллинойс содержание нитратного азота в водах поверхностного стока, по средним и максимальным данным, увеличилось в два- три и даже четыре раза (табл. 23).
Обогащаются избыточными концентрациями нитратов не только поверхностные воды, но и воды подземные - главный источник снабжения населения питьевой водой. Нитраты проникают в подземные воды на глубины 10-15 м и даже больше, вызывая повышение их концентрации до 10- 15 мг/л N, что уже явно опасно для людей (в пересчете на N03 это составляет 45-60 мг/л).
Подсчитан суммарный баланс азота для территории США (Accumulation of Nitrate, 1972). Общие поступления азота в почвы США выражаются величиной 21,0 млн. т N в год (в том числе с атмосферными осадками млн. т, с минеральными удобрениями 7,5 млн. т и биогенная фикса-


Таблица 23. Концентрация нитратного азота и количество азота в водах поверхностного стока на отдельных водоразделах штата Иллинойс (NAS of USA, 1972)



Таблица 24. Оценка потребления и возврата азота на территории США в 1970 г.

Фиксация не сим биотическая 1,2
Фиксация симбиотическая 3,6
Поступление с осадками 5,6
Химическая фиксация 7,5
Минерализация органического азота почвы 3,1
О бщее поступление 21,0
Использование в питании растений-животных-человека и сырье Производство волокна 0,2
Производство сахара 0,6
Производство протеина растительного происхождения 0,9
Производство протеина животного происхождения 15,1
Общее количество 16,8
Общее потребление ^ 21,0
Не использованный в пищевых цепях (разность) 4,2
Судьба азота, вовлеченного в питание и сырье Потре бляе мый людьми 1,2 />Потребляемый животными 4,2
Другие расходы 15,6
Годовой возврат в атмосферу
В форме аммония или окислов азота с парами воды 5,6
Потери за счет денитрификации в сточных водах 5,0
Денитрификация из почвы 8,9
Общее количество 19,5
Общее поступление 21,0
Ежегодное количество, удервкиваемое почвой и водой 1,5 ция 4,8 млн. т). Из этого количества около 17 млн. т идет на производство продуктов питания и текстильное сырье, а 4 млн.т не используется (табл. 24).
Все виды денитрификации (в том числе в водной среде более 10 млн. т) составляют около 18,5 млн. т, и около 1,5 млн. т ежегодно остается в почвах и водах (см. табл. 24). Данные по денитрификации здесь явно
преувеличены. Остаток азота в водах и почвах по крайней мере в два-три раза выше.
В итоге рассмотрения элементов современного биогеохимического цикла азота на суше намечаются следующие главные формы поступления его соединений: биогенная фиксация азота в почвах микроорганизмами симбиотического и несимбиотического типа; 2) поступление в растворы с метаболитами пищевых цепей, с отмершим органическим веществом, с продуктами минерализации органического вещества почв; 3) поступление окислов азота из продуктов сжигания горючих ископаемых; 4) внесение соединений азота в почвы в виде органических и минеральных удобрений; перенос и накопление нитратов при испарении грунтовых вод.
Расходные статьи баланса азота на суше слагаются из следующих главных форм: 1) поглощение соединений минерального азота высшими и низшими растениями и уход их в пищевые цепи экосистем; переход соединений азота в органические формы с образованием гумуса; денитрификация и возвращение в конечном счете в атмосферу большей части азота в газообразной молекулярной форме N2 и частично в форме окислов и аммиака; смыв, вынос и отчуждение соединений азота из биологических циклов в геологические; захоронение на геологически длительное время в осадочных породах, в горючих ископаемых или соляных месторождениях.

Круговорот углерода.

Самый интенсивный биогеохимический цикл – круговорот углерода. В

природе углерод существует в двух основных формах – в карбонатах

(известняках) и углекислом газе. Содержание последнего в 50 раз больше, чем

в атмосфере. Углерод участвует в образовании углеводов, жиров, белков и

нуклеиновых кислот.

Основная масса аккумулирована в карбонатах на дне океана (1016 т), в

кристаллических породах (1016 т), каменном угле и нефти (1016 т) и

участвует в большом цикле круговорота.

Основное звено большого круговорота углерода – взаимосвязь процессов

фотосинтеза и аэробного дыхания (рис. 1).

Другое звено большого цикла круговорота углерода представляет собой

анаэробное дыхание (без доступа кислорода); различные виды анаэробных

бактерий преобразуют органические соединения в метан и другие вещества

(например, в болотных экосистемах, на свалках отходов).

В малом цикле круговорота участвует углерод, содержащийся в

растительных тканях (около 1011 т) и тканях животных (около 109 т).

Круговорот кислорода .

В количественном отношении главной составляющей живой материи является

кислород, круговорот которого осложнён его способностью вступать в

различные химические реакции, главным образом реакции окисления. В

результате возникает множество локальных циклов, происходящих между

атмосферой, гидросферой и литосферой.

(осадочные кальциты, железные руды), имеет биогенное происхождение и должно

рассматриваться как продукт фотосинтеза. Этот процесс противоположен

процессу потребления кислорода при дыхании, который сопровождается

разрушением органических молекул, взаимодействием кислорода с водородом

(отщеплённым от субстрата) и образованием воды. В некотором отношении

круговорот кислорода напоминает обратный круговорот углекислого газа. В

основном он происходит между атмосферой и живыми организмами.

Потребление атмосферного кислорода и его возмещение растениями в

процессе фотосинтеза осуществляется довольно быстро. Расчёты показывают,

что для полного обновления всего атмосферного кислорода требуется около

двух тысяч лет. С другой стороны, для того, чтобы все молекулы воды

гидросферы были подвергнуты фотолизу и вновь синтезированы живыми

организмами, необходимо два миллиона лет. Большая часть кислорода,

вырабатываемого в течение геологических эпох, не оставалась в атмосфере, а

фиксировалась литосферой в виде карбонатов, сульфатов, оксидов железа, и её

масса составляет 5,9*1016 т. Масса кислорода, циркулирующего в биосфере в

виде газа или сульфатов, растворённых в океанических и континентальных

водах, в несколько раз меньше (0,4*1016 т).

Отметим, что, начиная с определённой концентрации, кислород очень

токсичен для клеток и тканей (даже у аэробных организмов). А живой

анаэробный организм не может выдержать (это было доказано ещё в прошлом

веке Л. Пастером) концентрацию кислорода, превышающую атмосферную на 1%.

Круговорот азота

Газообразный азот возникает в результате реакции окисления аммиака,

образующегося при извержении вулканов и разложении биологических отходов:

4NH3 + 3O2 (2N2 + 6H2O.

Круговорот азота – один из самых сложных, но одновременно самых

идеальных круговоротов. Несмотря на то что азот составляет около 80%

атмосферного воздуха, в большинстве случаев он не может быть

непосредственно использован растениями, т.к. они не усваивают газообразный

азот. Вмешательство живых существ в круговорот азота подчинено строгой

иерархии: только определённые категории организмов могут оказывать влияние

на отдельные фазы этого цикла. Газообразный азот непрерывно поступает в

атмосферу в результате работы некоторых бактерий, тогда как другие бактерии

– фиксаторы (вместе с сине-зелёными водорослями) постоянно поглощают его,

преобразуя в нитраты. Неорганическим путём нитраты образуются и в атмосфере

в результате электрических разрядов во время гроз.

Самые активные потребители азота – бактерии на корневой системе

растений семейства бобовых. Каждому виду этих растений присущи свои особые

бактерии, которые превращают азот в нитраты. В процессе биологического

цикла нитрат-ионы (NO3-) и ионы аммония (NH4+), поглощаемы растениями из

почвенной влаги, преобразуются в белки, нуклеиновые кислоты и т.д. Далее

образуются отходы в виде погибших организмов, являющихся объектами

жизнедеятельности других бактерий и грибов, преобразующих их в аммиак. Так

возникает новый цикл круговорота. Существуют организмы, способные

превращать аммиак в нитриты, нитраты и в газообразный азот. Основные звенья

круговорота азота в биосфере представлены схемой на рис. 3.

Биологическая активность организмов дополняется промышленными

способами получения азотосодержащих органических и неорганических веществ,

многие из которых применяются в качестве удобрений для повышения

продуктивности и роста растений.

Антропогенное влияние на круговорот азота определяется следующими

процессами:

1. сжигание топлива приводит к образованию оксида азота, а затем

реакциям:

2. 2NO + O2 (2NO2 ,

3. 4NO2 + 2H2O.+ O2 (4HNO3 ,

4. способствуя выпадению кислотных дождей;

5. в результате воздействия некоторых бактерий на удобрения и отходы

животноводства образуется закись азота – один из компонентов,

создающих парниковый эффект;

6. добыча полезных ископаемых, содержащих нитрат-ионы и ионы аммония,

для производства минеральных удобрений;

7. при сборе урожая из почвы выносятся нитрат-ионы и ионы аммония;

8. стоки с полей, ферм и из канализаций увеличивают количество нитрат-

ионов и ионов аммония в водных экосистемах, что ускоряет рост

водорослей и других растений; при разложении последних расходуется

кислород, что в конечном счёте приводит к гибели рыб.

Круговорот фосфора

Фосфор – один из основных компонентов (главным образом в виде и

) живого вещества и входит в состав нуклеиновых кислот (ДНК и РНК),

клеточных мембран, аденозинтрифосфата (АТФ) и аденозиндифосфата (АДФ),

жиров, костей и зубов. Круговорот фосфора, как и других биогенных

элементов, совершается по большому и малому циклам.

Запасы фосфора, доступные живым существам, полностью сосредоточены в

литосфере. Основные источники неорганического фосфора – изверженные или

осадочные породы. В земной коре содержание фосфора не превышает 1%, что

лимитирует продуктивность экосистем. Из пород земной коры неорганический

фосфор вовлекается в циркуляцию континентальными водами. Он поглощается

растениями, которые при его участии синтезируют различные органические

соединения и таким образом включаются в трофические цепи. Затем

органические фосфаты вместе с трупами, отходами и выделениями живых существ

возвращаются в землю, где снова подвергаются воздействию микроорганизмов и

превращаются в минеральные формы, употребляемые зелёными растениями.

В экосистеме океана фосфор приносится текучими водами, что

способствует развитию фитопланктона и живых организмов.

В наземных системах круговорот фосфора проходит в оптимальных

естественных условиях с минимумом потерь. В океане дело обстоит иначе. Это

связано с постоянным оседанием (седиментацией) органических веществ.

Осевший на небольшой глубине органический фосфор возвращается в круговорот.

Фосфаты, отложенные на больших морских глубинах не участвуют в малом

круговороте. Однако тектонические движения способствуют подъёму осадочных

пород к поверхности.

Таким образом фосфор медленно перемещается из фосфатных месторождений

на суше и мелководных океанических осадков к живым организмам и обратно

Рассматривая круговорот фосфора в масштабе биосферы за сравнительно

короткий период, можно сделать вывод, что он полностью не замкнут. Запасы

фосфора на земле малы. Поэтому считают, что фосфор – основной фактор,

лимитирующий рост первичной продукции биосферы. Полагают даже, что фосфор –

главный регулятор всех других биогеохимических циклов, это – наиболее

слабое звено в жизненной цепи, которая обеспечивает существование человека.

Антропогенное влияние на круговорот фосфора состоит в следующем:

1. добыча больших количеств фосфатных руд для минеральных удобрений и

моющих средств приводит к уменьшению количества фосфора в

биотическом круговороте;

2. стоки с поле, ферм и коммунальные отходы приводят к увеличению

фосфат-ионов в водоёмах, к резкому росту водных растений и

нарушению равновесия в водных экосистемах.

Круговорот серы

Из природных источников сера попадает в атмосферу в виде сероводорода,

диоксида серы и частиц сульфатных солей (рис. 5).

Около одной трети соединений серы и 99% диоксида серы – антропогенного

происхождения. В атмосфере протекают реакции, приводящие к кислотным

2SO2 + O2 (2SO3 ,

SO3 + H2O (H2SO4 .

Круговорот воды

Вода, как и воздух, - основной компонент, необходимый для жизни. В

количественном отношении это самая распространённая неорганическая

составляющая живой материи. Семена растений, в которых содержание воды не

превышает 10%, относятся к формам замедленной жизни. Такое же явление

(ангидробиоз) наблюдается у некоторых видов животных, которые при

неблагоприятных внешних условиях могут терять большую часть воды в своих

Вода в трёх агрегатных состояниях присутствует во всех составных

частях биосферы: атмосфере, гидросфере и литосфере. Если воду, находящуюся

в различных гидрогеологических формах, равномерно распределить по

соответствующим областям земного шара, то образуются слои следующей

толщины: для Мирового океана 2700 м, для ледников 100 м, для подземных вод

15 м, для поверхностных пресных вод 0,4 м, для атмосферной влаги 0,03 м.

Основную роль в циркуляции и биогеохимическом круговороте воды играет

атмосферная влага, несмотря на относительно малую толщину её слоя.

Атмосферная влага распределена по Земле неравномерно, что обуславливает

большие различия в количестве осадков в разных районах биосферы. Среднее

географической широты. Например, на Северном полюсе оно равно 2,5 мм (в

столбе воздуха с поперечным сечением 1 см2), на экваторе - 45 мм.

О механизме гидрогеологического цикла было сказано выше – в разделе

касающемся описания особенностей гидросферы. Вода, выпавшая на сушу, затем

расходуется на просачивание (или инфильтрацию), испарение и сток.

Просачивание особенно важно для наземных экосистем, так как способствует

снабжению почвы водой. В процессе инфильтрации вода поступает в водоносные

горизонты и подземные реки. Испарение с поверхности почвы также играет

важную роль в водном режиме местности, но более значительное количество

воды выделяют сами растения своей листвой. Причём количество воды,

выделяемое растениями, тем больше, чем лучше они ею снабжаются. Растения,

производящие одну тонну растительной массы, поглощают как минимум 100 т

Главную роль в круговороте воды на континентах играет суммарное

испарение (деревья и почва).

Последняя составляющая круговорота воды на суше – сток. Поверхностный

сток и ресурсы подземных водоносных слоёв обеспечивают питание водных

потоков. Вместе с тем при уменьшении плотности растительного покрова сток

становится основной причиной эрозии почвы.

Как уже отмечалось, вода участвует и в биологическом цикле, являясь

источником кислорода и водорода. Однако фотолиз её при фотосинтезе не

играет существенной роли в процессе круговорота.

Биогеохимические круговороты

В отличие от энергии, которая однажды использованная организмом,

превращается в тепло и теряется для экосистемы, вещества циркулируют в

биосфере, что и называется биогеохимическими круговоротами. Из 90 с лишним

элементов, встречающихся в природе, около 40 нужны живым организмам.

Наиболее важные для них и требующиеся в больших количествах: углерод,

водород, кислород, азот. Кислород поступает в атмосферу в результате

фотосинтеза и расходуется организмами при дыхании. Азот извлекается из

атмосферы благодаря деятельности азотофиксирующих бактерий и возвращается в

неё другими бактериями.

Круговороты элементов и веществ осуществляются за счёт

саморегулирующих процессов, в которых участвуют все составные части

экосистем. Эти процессы являются безотходными. В природе нет ничего

бесполезного или вредного, даже от вулканических извержений есть польза,

так как с вулканическими газами в воздух поступают нужные элементы,

например, азот.

Существует закон глобального замыкания биогеохимического круговорота в

биосфере, действующий на всех этапах её развития, как и правило увеличения

замкнутости биогеохимического круговорота в ходе сукцессии. В процессе

эволюции биосферы увеличивается роль биологического компонента в замыкании

биогеохимического круговорота. Ещё большую роль на биогеохимический

круговорот оказывает человек. Но его роль осуществляется в противоположном

направлении. Человек нарушает сложившиеся круговороты веществ, и в этом

проявляется его геологическая сила, разрушительная по отношению к биосфере

на сегодняшний день.

Когда 2 млрд. лет тому назад на Земле появилась жизнь, атмосфера

состояла из вулканических газов. В ней было много углекислого газа и мало

кислорода (если вообще был), и первые организмы были анаэробными. Так как

продукция в среднем превосходила дыхание, за геологическое время в

атмосфере накапливался кислород и уменьшалось содержание углекислого газа.

сжигания больших количеств горючих ископаемых и уменьшения поглотительной

способности «зелёного пояса». Последнее является результатом уменьшения

количества самих зелёных растений, а также связано с тем, что пыль и

загрязняющие частицы в атмосфере отражают поступающие в атмосферу лучи.

В результате антропогенной деятельности степень замкнутости

биогеохимических круговоротов уменьшается. Хотя она довольно высока (для

различных элементов и веществ она не одинакова), но тем не менее не

абсолютна, что и показывает пример возникновения кислородной атмосферы.

Иначе невозможна была бы эволюция (наивысшая степень замкнутости

биогеохимических круговоротов наблюдается в тропических экосистемах –

наиболее древних и консервативных).

Таким образом, следует говорить не об изменении человеком того, что не

должно меняться, а скорее о влиянии человека на скорость и направление

изменений и на расширение их границ, нарушающее правило меры преобразования

природы. Последнее формулируется следующим образом: в ходе эксплуатации

природных систем нельзя превышать некоторые пределы, позволяющие этим

системам сохранять свойства самоподдержания. Нарушение меры как в сторону

увеличения, так и в сторону уменьшения приводит к отрицательным

результатам. Например, избыток вносимых удобрений столь же вреден, сколь и

недостаток. Это чувство меры утеряно современным человеком, считающим, что

в биосфере ему всё позволено.

Надежды на преодоление экологических трудностей связывают, в

частности, с разработкой и введением в эксплуатацию замкнутых

технологических циклов. Создаваемые человеком циклы превращения материалов

считается желательным устраивать так, чтобы они были подобны естественным

циклам круговорота веществ. Тогда одновременно решались бы проблемы

обеспечения человечества невосполнимыми ресурсами и проблема охраны

природной среды от загрязнения, поскольку ныне только 1 – 2% веса природных

ресурсов утилизируется в конечном продукте.

Теоретически замкнутые циклы превращения вещества возможны. Однако

полная и окончательная перестройка индустрии по принципу круговорота

вещества в природе не реальна. Хотя бы временное нарушение замкнутости

технологического цикла практически неизбежно, например, при создании

синтетического материала с новыми, неизвестными природе свойствами. Такое

вещество вначале всесторонне апробируется на практике, и только потом могут

быть разработаны способы его разложения с целью внедрения составных частей

в природные круговороты.


Похожая информация.


Азот и его соединения играют в жизни биосферы важную и незаменимую роль. Основным резервуаром азота в биосфере также является воздушная оболочка. Около 80% всех запасов азота сосредоточено в атмосфере планеты, что связано с направлением биогеохимических потоков соединений азота, образующихся при денитрификации. Основной формой, в которой содержится азот в атмосфере, является молекулярная - N2.

Биогеохимический цикл азота хорошо изучен в различных экосистемах. Основные процессы цикла следующие:

  • * Фиксация - трансформация атмосферного N2 в органический N;
  • * Минерализация - превращение органического N в неорганический;
  • * Нитрификация - окисление NН4+ в нитрит NО2- и нитрат NО3 -;
  • * Денитрификация - трансформация неорганического N в атмосферный N2О и N2;
  • * Ассимиляция - превращение неорганического N в органический.

Первичный азот в атмосфере, вероятно, появился в результате процессов дегазации верхней мантии и из вулканических выделений. Фотохимические реакции в высоких слоях атмосферы приводят к образованию соединений азота и заметному поступлению их на сушу и в океан с атмосферными осадками (3-8 кг/га аммонийного азота в год и 1,5-6 кг/га нитратного). Этот азот также включается в общий биогеохимический поток растворенных соединений, мигрирующих с водными массами, участвует в почвообразовательных процессах и в формировании биомассы растений. (Рис. 1)

Рис.

Атмосферный азот не может напрямую использоваться высшими растениями. Поэтому ключевую роль в биологическом круговороте азота играют организмы-фиксаторы. Это микроорганизмы нескольких различных групп, обладающие способностью путём прямой фиксации непосредственно извлекать азот из атмосферы и, в конечном счёте, связывать его в почве. К ним относятся:

  • - некоторые свободноживущие почвенные бактерии;
  • - Симбионтные клубеньковые бактерии (существующие в симбиозе с бобовыми);
  • - цианобионты, которые также бывают симбионтами грибов, мхов, папоротников, а иногда и высших растений. В результате деятельности организмов - фиксаторов азота он связывается в почвах в нитритной форме (соединения на основе NH3).

Нитритные соединения азота способны мигрировать в водных растворах. При этом они окисляются и преобразуются в нитратные - соли азотной кислоты HNO3. В этой форме азотные соединения способны эффективно усваиваться высшими растениями и использоваться для синтеза белковых молекул на основе пептидных связей C-N. Далее, по трофическим цепям, азот попадает в организмы животных. В окружающую среду (в водные растворы и в почву) он возвращается в процессах выделительной деятельности животных или разложения органического вещества.

Возврат свободного азота в атмосферу, как и его извлечение, осуществляется в результате микробиологических процессов. Это звено круговорота функционирует благодаря деятельности почвенных бактерий-денитрификаторов, вновь переводящих азот в молекулярную форму. (Рис. 1)

В литосфере, в составе осадочных отложений, связывается весьма небольшая часть азота. Причина этого в том, что минеральные соединения азота, в отличие от карбонатов, очень хорошо растворимы. Выпадение некоторой доли азота из биологического круговорота также компенсируется вулканическими процессами. Благодаря вулканической деятельности в атмосферу поступают различные газообразные соединения азота, который в условиях географической оболочки Земли неизбежно переходит в свободную молекулярную форму.

Антропогенное влияние на биогеохимические циклы

Антропогенные воздействия приводят к нарушению практически всех природных биогеохимических циклов. По данным ученых ежегодно в мире в результате деятельности человека в атмосферу поступает 25,5 млрд. т оксидов углерода, 190 млн. т оксидов серы, 65 млн. т оксидов азота, 1,4 млн. т фреонов, органические соединения свинца, углеводороды, в том числе канцерогенные, большое количество твердых частиц (пыль, копоть, сажа). Кислотные дожди, вызываемые главным образом диоксидом серы и оксидами азота, наносят огромный вред лесным биоценозам. От них страдают леса, особенно хвойные. Все это ведет к глобальному экологическому кризису и требует незамедлительного перехода к рациональному природопользованию.

Обобщающие вывод: Антропогенные воздействия приводят к нарушению практически всех природных биогеохимических циклов. Все это ведет к глобальному экологическому кризису и требует незамедлительного перехода к рациональному природопользованию. (источник - учебник для вузов «Экология», авт. Николайкин Н.И., Николайкина Н.Е., Мелехова О.П., глава 6.3.1.3. (с. 167-170)).