Натуральные числа и их свойства. Изучение точного предмета: натуральные числа — это какие числа, примеры и свойства Натуральное число в записи которого не менее

Навигация по странице:

Определение. Натуральные числа - это числа, которые используются для счета: 1 , 2 , 3 , …, n , …

Множество натуральных чисел принято обозначать символом N (от лат. naturalis - естественный).

Натуральные числа в десятичной системе счисления записываются с помощью десяти цифр:

0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Множество натуральных чисел - является упорядоченным множеством , т.е. для любых натуральных чисел m и n справедливо одно из соотношений:

  • либо m = n (m равно n ),
  • либо m > n (m больше n ),
  • либо m < n (m меньше n ).
  • Наименьшее натурально число - единица (1 )
  • Наибольшего натурального числа не существует .
  • Нуль (0 ) не является натуральным числом.
Множество натуральных чисел бесконечно , так как для любого числа n всегда найдется число m , которое больше n

Из соседних натуральных чисел, число, которое стоит левее числа n называется предыдущим числу n , а число, которое стоит правее называется следующим за n .

Операции над натуральными числами

К замкнутым операциям над натуральными числами (операциям в результате, которых получается натуральных чисел) относятся следующие арифметические операции:

  • Сложение
  • Умножение
  • Возведение в степень a b , где a - основание степени и b - показатель степени. Если основание и показатель - натуральные числа, то и результат будет являться натуральным числом.

Дополнительно рассматривают ещё две операции. С формальной точки зрения они не являются операциями над натуральными числами, так как их результат не всегда будет натуральным числом.

  • Вычитание (При этом Уменьшаемое должно быть больше Вычитаемого)
  • Деление

Классы и разряды

Разряд - положение (позиция) цифры в записи числа.

Низший разряд - самый правый. Старший разряд - самый левый.

Пример:

5 - единиц, 0 - десятков, 7 - сотен,
2 - тысячи, 4 - десятков тысяч, 8 - сотен тысяч,
3 - миллиона, 5 - десятков миллионов, 1 - сотня миллионов

Для удобства чтения, натуральных числа разбивают, на группы по три цифры в каждой начиная справа.

Класс - группа из трех цифр, на который разбито число, начиная справа. Последний класс может состоять из трех, двух или одной цифры.

  • Первый класс - класс единиц;
  • Второй класс - класс тысяч;
  • Третий класс - класс миллионов;
  • Четвертый класс - класс миллиардов;
  • Пятый класс - класс триллионов;
  • Шестой класс - класс квадрильонов (квадриллионов);
  • Седьмой класс - класс квинтильонов (квинтиллионов);
  • Восьмой класс - класс секстильонов;
  • Девятый класс - класс септильонов;

Пример:

34 - миллиарда 456 миллионов 196 тысяч 45

Сравнение натуральных чисел

  1. Сравнение натуральных чисел с разным количеством цифр

    Среди натуральных чисел больше то, у которого больше цифр
  2. Сравнение натуральных чисел с равным количеством цифр

    Сравнить числа поразрядно, начиная со старшего разряда. Больше то, у которого больше единиц в наивысшем одноименном разряде

Пример:

3466 > 346 - так как число 3466 состоит из 4 цифр, а число 346 из 3 цифр.

34666 < 245784 - так как число 34666 состоит из 5 цифр, а число 245784 из 6 цифр.

Пример:

346 667 670 52 6 986

346 667 670 56 9 429

Второе из натуральных чисел с равным количеством цифр больше, так как 6 > 2.

Натуральные числа – числа, которые применяют для счета предметов. Любое натуральное число можно записать с помощью десяти цифр: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9. Такую записьчисел называют десятичной.

Последовательность всех натуральных чисел называют натуральным рядом.

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, ...

Самое маленькое натуральное число – единица (1). В натуральном ряду каждое следующее число на 1 больше предыдущего. Натуральный ряд бесконечен, наибольшего числа в нем нет.

Значение цифры зависит от ее места в записи числа. Например, цифра 4 означает: 4 единицы,если она стоит на последнем месте в записи числа (в разряде единиц); 4 десятка, если она стоит на предпоследнем месте (в разряде десятков); 4 сотни, если она стоит на третьем месте от конца разряде сотен).

Цифра0 означает отсутствие единиц данного разряда в десятичной записи числа.Она служит и для обозначения числа «нуль ». Это число означает «ни одного». Счет 0: 3 футбольного матча говорит о том, что первая команда не забила ни одного гола в ворота противника.

Нуль не относят к натуральным числам. И действительно счет предметов никогда не начинают с нуля.

Если запись натурального числа состоит из одного знакаодной цифры, то его называют однозначным. Т.е. однозначное натуральное число – натуральное число, запись которого состоит из одного знакаодной цифры. Например, числа 1, 6, 8 – однозначные.

Двузначное натуральное число – натуральное число, запись которого состоит из двух знаков – двух цифр.

Например, числа 12, 47, 24, 99 – двузначные.

Так же по числу знаков в данном числе дают названия и другим числам:

числа 326, 532, 893 – трехзначные;

числа 1126, 4268, 9999 – четырехзначные и т.д.

Двузначные, трехзначные, четырехзначные, пятизначные и т.д. числа называют многозначными числами.

Для чтения многозначных чисел их разбивают, начиная справа, на группы по три цифры в каждой (самая левая группа может состоять из одной или двух цифр). Эти группы называют классами.

Миллион – это тысяча тысяч (1000 тыс.), его записывают 1 млн или 1 000 000.

Миллиард – это 1000 миллионов. Его записывают 1 млрд или 1 000 000 000.

Три первые цифры справа составляют класс единиц, три следующие – класс тысяч, далее идут классы миллионов, миллиардов и т.д. (рис. 1).

Рис. 1. Класс миллионов, класс тысяч и класс единиц (слева направо)

Число15389000286 записано в разрядной сетке (рис. 2).

Рис. 2. Разрядная сетка: число 15 миллиардов 389 миллионов 286

Это число имеет 286 единиц в классе единиц, нуль единиц в классе тысяч, 389 единиц в классе миллионов и15 единиц в классе миллиардов.


Натуральные числа для нас очень привычны и естественны. И это не удивительно, так как знакомство с ними начинается с первых лет нашей жизни на интуитивно понятном уровне.

Информация этой статьи создает базовое представление о натуральных числах, раскрывает их предназначение, прививает навыки записи и чтения натуральных чисел. Для лучшего усвоения материала приведены необходимые примеры и иллюстрации.

Навигация по странице.

Натуральные числа – общее представление.

Не лишено здравой логики следующее мнение: появление задачи счета предметов (первый, второй, третий предмет и т.д.) и задачи указания количества предметов (один, два, три предмета и т.д.) обусловило создание инструмента для ее решения, этим инструментом явились натуральные числа .

Из этого предложения видно основное предназначение натуральных чисел – нести в себе информацию о количестве каких-либо предметов или порядковом номере данного предмета в рассматриваемом множестве предметов.

Чтобы человек мог использовать натуральные числа, они должны быть каким-либо образом доступны как для восприятия, так и для воспроизведения. Если озвучить каждое натуральное число, то оно станет воспринимаемым на слух, а если изобразить натуральное число, то его можно будет увидеть. Это самые естественные способы, позволяющие донести и воспринять натуральные числа.

Так приступим же к приобретению навыков изображения (записи) и навыков озвучивания (чтения) натуральных чисел, познавая при этом их смысл.

Десятичная запись натурального числа.

Сначала следует определиться с тем, от чего мы будем отталкиваться при записи натуральных чисел.

Давайте запомним изображения следующих знаков (покажем их через запятую): 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . Приведенные изображения представляют собой запись так называемых цифр . Давайте сразу договоримся не переворачивать, не наклонять и иным образом не искажать цифры при записи.

Теперь условимся, что в записи любого натурального числа могут присутствовать только лишь указанные цифры и не могут присутствовать никакие другие символы. Также условимся, что цифры в записи натурального числа имеют одинаковую высоту, располагаются в строчку друг за другом (с почти отсутствующими отступами) и слева находится цифра, отличная от цифры 0 .

Приведем несколько примеров правильной записи натуральных чисел: 604 , 777 277 , 81 , 4 444 , 1 001 902 203, 5 , 900 000 (обратите внимание: отступы между цифрами не всегда одинаковы, подробнее об этом будет сказано при рассмотрении ). Из приведенных примеров видно, что в записи натурального числа не обязательно присутствуют все из цифр 0 , 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 ; некоторые или все цифры, участвующие в записи натурального числа, могут повторяться.

Записи 014 , 0005 , 0 , 0209 не являются записями натуральных чисел, так как слева находится цифра 0 .

Запись натурального числа, выполненная с учетом всех требований, описанных в этом пункте, называется десятичной записью натурального числа .

Дальше мы не будем разграничивать натуральные числа и их запись. Поясним это: дальше в тексте будут использоваться фразы типа «дано натуральное число 582 », которые будут означать, что дано натуральное число, запись которого имеет вид 582 .

Натуральные числа в смысле количества предметов.

Пришло время разобраться с количественным смыслом, который несет в себе записанное натуральное число. Смысл натуральных чисел в плане нумерации предметов рассмотрен в статье сравнение натуральных чисел .

Начнем с натуральных чисел, записи которых совпадают с записями цифр, то есть, с чисел 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 и 9 .

Представим, что мы открыли глаза и увидели некоторый предмет, например, вот такой . В этом случае можно записать, что мы видим 1 предмет. Натуральное число 1 читается как «один » (склонение числительного «один», а также других числительных, дадим в пункте ), для числа 1 принято еще одно название - «единица ».

Однако, термин «единица» - многозначный, им кроме натурального числа 1 , называют нечто, рассматриваемое как единое целое. Например, любой один предмет из их множества можно назвать единицей. К примеру, любое яблоко из множества яблок – это единица, любая стая птиц из множества стай птиц – это также единица и т.д.

Теперь открываем глаза и видим: . То есть, мы видим один предмет и еще один предмет. В этом случае можно записать, что мы видим 2 предмета. Натуральное число 2 , читается как «два ».

Аналогично, - 3 предмета (читается «три » предмета), - 4 четыре ») предмета, - 5 пять »), - 6 шесть »), - 7 семь »), - 8 восемь »), - 9 девять ») предметов.

Итак, с рассмотренной позиции натуральные числа 1 , 2 , 3 , …, 9 указывают количество предметов.

Число, запись которого совпадает с записью цифры 0 , называют «нуль ». Число нуль НЕ натуральное, однако, его обычно рассматривают вместе с натуральными числами. Запомним: нуль означает отсутствие чего-либо. Например, нуль предметов – это ни одного предмета.

В следующих пунктах статьи мы продолжим раскрывать смысл натуральных чисел в плане указания количества.

Однозначные натуральные числа.

Очевидно, запись каждого из натуральных чисел 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 состоит из одного знака - одной цифры.

Определение.

Однозначные натуральные числа – это натуральные числа, запись которых состоит из одного знака - одной цифры.

Перечислим все однозначные натуральные числа: 1 , 2 , 3 , 4 , 5 , 6 , 7 , 8 , 9 . Всего однозначных натуральных чисел девять.

Двузначные и трехзначные натуральные числа.

Сначала дадим определение двузначных натуральных чисел.

Определение.

Двузначные натуральные числа – это натуральные числа, запись которых составляют два знака - две цифры (различные или одинаковые).

К примеру, натуральное число 45 – двузначное, числа 10 , 77 , 82 тоже двузначные, а 5 490 , 832 , 90 037 – не двузначные.

Давайте разберемся, какой смысл несут в себе двузначные числа, при этом будем отталкиваться от уже известного нам количественного смысла однозначных натуральных чисел.

Для начала введем понятие десятка .

Представим такую ситуацию – мы открыли глаза и увидели множество, состоящее из девяти предметов и еще одного предмета. В этом случае говорят об 1 десятке (одном десятке) предметов. Если рассматривают вместе один десяток и еще один десяток, то говорят о 2 десятках (двух десятках). Если к двум десяткам присоединить еще один десяток, то будем иметь три десятка. Продолжая этот процесс, будем получать четыре десятка, пять десятков, шесть десятков, семь десятков, восемь десятков, и наконец, девять десятков.

Теперь мы можем перейти к сути двузначных натуральных чисел.

Для этого посмотрим на двузначное число как на два однозначных числа – одно находится слева в записи двузначного числа, другое находится справа. Число слева указывает количество десятков, а число справа – количество единиц. При этом если справа в записи двузначного числа находится цифра 0 , то это означает отсутствие единиц. В этом и есть весь смысл двузначных натуральных чисел в плане указания количества.

К примеру, двузначное натуральное число 72 соответствует 7 десяткам и 2 единицам (то есть, 72 яблока – это множество из семи десятков яблок и еще двух яблок), а число 30 отвечает 3 десяткам и 0 единицам, то есть, единиц, которые не объединены в десятки, нет.

Ответим на вопрос: «Сколько всего существует двузначных натуральных чисел»? Ответ: их 90 .

Переходим к определению трехзначных натуральных чисел.

Определение.

Натуральные числа, запись которых состоит из 3 знаков – 3 цифр (различных или повторяющихся), называются трехзначными .

Примерами натуральных трехзначных чисел являются 372 , 990 , 717 , 222 . Натуральные числа 7 390 , 10 011 , 987 654 321 234 567 не являются трехзначными.

Для понимания смысла, заложенного в трехзначных натуральных числах, нам понадобится понятие сотни .

Множество из десяти десятков – это 1 сотня (одна сотня). Сотня и сотня – это 2 сотни. Две сотни и еще одна сотня – это три сотни. И так далее, имеем четыре сотни, пять сотен, шесть сотен, семь сотен, восемь сотен, и, наконец, девять сотен.

Теперь посмотрим на трехзначное натуральное число как на три однозначных натуральных числа, идущих друг за другом справа налево в записи трехзначного натурального числа. Число справа указывает количество единиц, следующее число указывает количество десятков, следующее число – количество сотен. Цифры 0 в записи трехзначного числа означают отсутствие десятков и (или) единиц.

Таким образом, трехзначное натуральное число 812 соответствует 8 сотням, 1 десятку и 2 единицам; число 305 – трем сотням (0 десяткам, то есть, десятков, не объединенных в сотни, нет) и 5 единицам; число 470 – четырем сотням и семи десяткам (единиц, не объединенных в десятки, нет); число 500 – пяти сотням (десятков, не объединенных в сотни, и единиц, не объединенных в десятки, нет).

Аналогичным образом можно дать определения четырехзначных, пятизначных, шестизначных и т.д. натуральных чисел.

Многозначные натуральные числа.

Итак, переходим к определению многозначных натуральных чисел.

Определение.

Многозначные натуральные числа – это натуральные числа, запись которых состоит из двух или трех или четырех и т.д. знаков. Иными словами, многозначные натуральные числа – это двузначные, трехзначные, четырехзначные и т.д. числа.

Сразу скажем, что множество, состоящее из десяти сотен, – это одна тысяча , тысяча тысяч – это один миллион , тысяча миллионов – это один миллиард , тысяча миллиардов – это один триллион . Тысяче триллионов, тысяче тысяч триллионов и так далее также можно дать свои названия, но в этом нет особой надобности.

Так какой смысл скрывается за многозначными натуральными числами?

Посмотрим на многозначное натуральное число как на следующие одно за другим справа налево однозначные натуральные числа. Число справа указывает количество единиц, следующее число – количество десятков, следующее – количество сотен, дальше – количество тысяч, дальше – количество десятков тысяч, дальше – сотен тысяч, дальше – количество миллионов, дальше – количество десятков миллионов, дальше – сотен миллионов, дальше – количество миллиардов, далее – количество десятков миллиардов, далее – сотен миллиардов, далее – триллионов, далее - десятков триллионов, далее - сотен триллионов и так далее.

К примеру, многозначное натуральное число 7 580 521 соответствует 1 единице, 2 десяткам, 5 сотням, 0 тысячам, 8 десяткам тысяч, 5 сотням тысяч и 7 миллионам.

Таким образом, мы научились группировать единицы в десятки, десятки в сотни, сотни в тысячи, тысячи в десятки тысяч и так далее и выяснили, что цифры в записи многозначного натурального числа указывают соответствующее количество вышеперечисленных групп.

Чтение натуральных чисел, классы.

Мы уже упоминали, как читаются однозначные натуральные числа. Выучим содержимое следующих таблиц наизусть.






А как читаются остальные двузначные числа?

Поясним на примере. Прочитаем натуральное число 74 . Как мы выяснили выше, это число соответствует 7 десяткам и 4 единицам, то есть, 70 и 4 . Обращаемся к только что записанным таблицам, и число 74 читаем как: «Семьдесят четыре» (союз «и» не произносим). Если нужно прочитать число 74 в предложении: «Нет 74 яблок» (родительный падеж), то это будет звучать так: «Нет семидесяти четырех яблок». Еще пример. Число 88 – это 80 и 8 , следовательно, читаем: «Восемьдесят восемь». А вот пример предложения: «Он думает о восьмидесяти восьми рублях».

Переходим к чтению трехзначных натуральных чисел.

Для этого нам придется выучить еще несколько новых слов.



Осталось показать, как читаются остальные трехзначные натуральные числа. При этом будем использовать уже полученные навыки чтения однозначных и двузначных чисел.

Разберем пример. Прочитаем число 107 . Это число соответствует 1 сотне и 7 единицам, то есть, 100 и 7 . Обратившись к таблицам, читаем: «Сто семь». А теперь произнесем число 217 . Это число есть 200 и 17 , поэтому, читаем: «Двести семнадцать». Аналогично, 888 – это 800 (восемьсот) и 88 (восемьдесят восемь), читаем: «Восемьсот восемьдесят восемь».

Переходим к чтению многозначных чисел.

Для чтения запись многозначного натурального числа разбивается, начиная справа, на группы по три цифры, при этом в самой левой такой группе может оказаться либо 1 , либо 2 , либо 3 цифры. Эти группы называются классами . Класс, находящийся справа, называют классом единиц . Следующий за ним (справа налево) класс называют классом тысяч , следующий класс – классом миллионов , следующий – классом миллиардов , далее идет класс триллионов . Можно дать названия и следующих классов, но натуральные числа, запись которых состоит из 16 , 17 , 18 и т.д. знаков, обычно не читают, так как их очень трудно воспринять на слух.

Посмотрите на примеры разбиения многозначных чисел на классы (для наглядности классы отделяют друг от друга небольшим отступом): 489 002 , 10 000 501 , 1 789 090 221 214 .

Занесем записанные натуральные числа в таблицу, по которой легко научиться их читать.


Чтобы прочитать натуральное число, называем слева направо составляющие его числа по классам и добавляем название класса. При этом не произносим название класса единиц, а также пропускаем те классы, которые составляют три цифры 0 . Если в записи класса слева находится цифра 0 или две цифры 0 , то игнорируем эти цифры 0 и читаем число, полученное отбрасыванием этих цифр 0 . К примеру, 002 прочитаем как «два», а 025 - как «двадцать пять».

Прочитаем число 489 002 по приведенным правилам.

Чтение ведем слева направо,

  • читаем число 489 , представляющее класс тысяч, - «четыреста восемьдесят девять»;
  • добавляем название класса, получаем «четыреста восемьдесят девять тысяч»;
  • дальше в классе единиц видим 002 , слева находятся нули, их игнорируем, поэтому 002 читаем как «два»;
  • название класса единиц добавлять не надо;
  • в итоге имеем 489 002 – «четыреста восемьдесят девять тысяч два».

Приступаем к чтению числа 10 000 501 .

  • Слева в классе миллионов видим число 10 , читаем «десять»;
  • добавляем название класса, имеем «десять миллионов»;
  • далее видим запись 000 в классе тысяч, так как все три цифры есть цифры 0 , то пропускаем этот класс и переходим к следующему;
  • класс единиц представляет число 501 , которое читаем «пятьсот один»;
  • таким образом, 10 000 501 – десять миллионов пятьсот один.

Сделаем это без подробных пояснений: 1 789 090 221 214 – «один триллион семьсот восемьдесят девять миллиардов девяноста миллионов двести двадцать одна тысяча двести четырнадцать».

Итак, в основе навыка чтения многозначных натуральных чисел лежит умение разбивать многозначные числа на классы, знание названий классов и умение читать трехзначные числа.

Разряды натурального числа, значение разряда.

В записи натурального числа значение каждой цифры зависит от ее позиции. К примеру, натуральное число 539 соответствует 5 сотням, 3 десяткам и 9 единицам, следовательно, цифра 5 в записи числа 539 определяет количество сотен, цифра 3 – количество десятков, а цифра 9 – количество единиц. При этом говорят, что цифра 9 стоит в разряде единиц и число 9 является значением разряда единиц , цифра 3 стоит в разряде десятков и число 3 является значением разряда десятков , а цифра 5 – в разряде сотен и число 5 является значением разряда сотен .

Таким образом, разряд – это с одной стороны позиция цифры в записи натурального числа, а с другой стороны значение этой цифры, определяемое ее позицией.

Разрядам присвоены названия. Если смотреть на цифры в записи натурального числа справа налево, то им будут соответствовать следующие разряды: единиц, десятков, сотен, тысяч, десятков тысяч, сотен тысяч, миллионов, десятков миллионов и так далее.

Названия разрядов удобно запоминать, когда они представлены в виде таблицы. Запишем таблицу, содержащую названия 15 разрядов.


Заметим, что количество разрядов данного натурального числа равно количеству знаков, участвующих в записи этого числа. Таким образом, в записанной таблице содержатся названия разрядов всех натуральных чисел, запись которых содержит до 15 знаков. Следующие разряды также имеют свои названия, но они очень редко используются, поэтому не имеет смысла их упоминать.

С помощью таблицы разрядов удобно определять разряды данного натурального числа. Для этого нужно записать в эту таблицу данное натуральное число так, чтобы в каждом разряде оказалась одна цифра, и крайняя справа цифра оказалась в разряде единиц.

Приведем пример. Запишем натуральное число 67 922 003 942 в таблицу, при этом станут отчетливо видны разряды и значения этих разрядов.


В записи этого числа цифра 2 стоит в разряде единиц, цифра 4 – в разряде десятков, цифра 9 – в разряде сотен и т.д. Следует обратить внимание на цифры 0 , находящиеся в разрядах десятков тысяч и сотен тысяч. Цифры 0 в этих разрядах означают отсутствие единиц данных разрядов.

Следует еще обмолвиться о так называемом низшем (младшем) и высшем (старшем) разряде многозначного натурального числа. Низшим (младшим) разрядом любого многозначного натурального числа является разряд единиц. Высшим (старшим) разрядом натурального числа является разряд, соответствующий крайней справа цифре в записи этого числа. Например, младшим разрядом натурального числа 23 004 является разряд единиц, а старшим – разряд десятков тысяч. Если в записи натурального числа двигаться по разрядам слева направо, то каждый следующий разряд ниже (младше) предыдущего. Например, разряд тысяч младше разряда десятков тысяч, тем более разряд тысяч младше разряда сотен тысяч, миллионов, десятков миллионов и т.д. Если же в записи натурального числа двигаться по разрядам справа налево, то каждый следующий разряд выше (старше) предыдущего. Например, разряд сотен старше разряда десятков, и тем более, старше разряда единиц.

В некоторых случаях (например, при выполнении сложения или вычитания) используется не само натуральное число, а сумма разрядных слагаемых этого натурального числа.

Вкратце о десятичной системе счисления.

Итак, мы познакомились с натуральными числами, со смыслом, заложенным в них, и способом записи натуральных чисел с помощью десяти цифр.

Вообще, метод записи чисел с помощью знаков, называют системой счисления . Значение цифры в записи числа может зависеть от ее позиции, а может и не зависеть от ее позиции. Системы счисления, в которых значение цифры в записи числа зависит от ее позиции, называют позиционными .

Таким образом, рассмотренные нами натуральные числа и метод их записи, указывает на то, что мы пользуемся позиционной системой счисления. Следует заметить, что особое место в этой системе счисления имеет число 10 . Действительно, счет ведется десятками: десять единиц объединяются в десяток, десяток десятков объединяется в сотню, десяток сотен – в тысячу, и так далее. Число 10 называют основанием данной системы счисления, а саму систему счисления называют десятичной .

Помимо десятичной системы счисления существуют и другие, например, в информатике используется двоичная позиционная система счисления, а с шестидесятеричной системой мы сталкиваемся, когда речь идет об измерении времени.

Список литературы.

  • Математика. Любые учебники для 5 классов общеобразовательных учреждений.

Определение

Натуральными числами называются числа, которые используются при счете или для указания порядкового номера предмета среди однородных предметов.

Например. Натуральными будут такие числа: $2,37,145,1059,24411$

Натуральные числа, записанные в порядке возрастания, образуют числовой ряд. Он начинается с наименьшего натурально числа 1. Множество всех натуральных чисел обозначают $N=\{1,2,3, \dots n, \ldots\}$. Оно бесконечно, так как не существует наибольшего натурального числа. Если к любому натуральному числу прибавить единицу, то получаем натуральное число, следующее за данным числом.

Пример

Задание. Какие из следующих чисел являются натуральными?

$$-89 ; 7 ; \frac{4}{3} ; 34 ; 2 ; 11 ; 3,2 ; \sqrt{129} ; \sqrt{5}$$

Ответ. $7 ; 34 ; 2 ; 11$

На множестве натуральных чисел вводится две основные арифметические операции - сложение и умножение . Для обозначения этих операций используются соответственно символы " + " и " " (или " × " ).

Сложение натуральных чисел

Каждой паре натуральных чисел $n$ и $m$ ставится в соответствие натуральное число $s$, называемое суммой. Сумма $s$ состоит из стольких единиц, сколько их содержится в числах $n$ и $m$. О числе $s$ говорят, что оно получено в результате сложения чисел $n$ и $m$, и пишут

Числа $n$ и $m$ называются при этом слагаемыми. Операция сложения натуральных чисел обладает следующими свойствами:

  1. Коммутативность: $n+m=m+n$
  2. Ассоциативность: $(n+m)+k=n+(m+k)$

Подробнее о сложении чисел читайте по ссылке .

Пример

Задание. Найти сумму чисел:

$13+9 \quad$ и $ \quad 27+(3+72)$

Решение. $13+9=22$

Для вычисления второй суммы, для упрощения вычислений, применим к ней вначале свойство ассоциативности сложения:

$$27+(3+72)=(27+3)+72=30+72=102$$

Ответ. $13+9=22 \quad;\quad 27+(3+72)=102$

Умножение натуральных чисел

Каждой упорядоченной паре натуральных чисел $n$ и $m$ ставится в соответствие натуральное число $r$, называемое их произведением. Произведение $r$ содержит стольких единиц, сколько их содержится в числе $n$, взятых столько раз, сколько единиц содержится в числе $m$. О числе $r$ говорят, что оно получено в результате умножения чисел $n$ и $m$, и пишут

$n \cdot m=r \quad $ или $ \quad n \times m=r$

Числа $n$ и $m$ называются множителями или сомножителями.

Операция умножения натуральных чисел обладает следующими свойствами:

  1. Коммутативность: $n \cdot m=m \cdot n$
  2. Ассоциативность: $(n \cdot m) \cdot k=n \cdot(m \cdot k)$

Подробнее о умножении чисел читайте по ссылке .

Пример

Задание. Найти произведение чисел:

12$\cdot 3 \quad $ и $ \quad 7 \cdot 25 \cdot 4$

Решение. По определению операции умножения:

$$12 \cdot 3=12+12+12=36$$

Ко второму произведению применим свойство ассоциативности умножения:

$$7 \cdot 25 \cdot 4=7 \cdot(25 \cdot 4)=7 \cdot 100=700$$

Ответ. $12 \cdot 3=36 \quad;\quad 7 \cdot 25 \cdot 4=700$

Операция сложения и умножения натуральных чисел связаны законом дистрибутивности умножения относительно сложения:

$$(n+m) \cdot k=n \cdot k+m \cdot k$$

Сумма и произведение любых двух натуральных чисел всегда есть число натуральное, поэтому множество всех натуральных чисел замкнуто относительно операций сложения и умножения.

Так же на множестве натуральных чисел можно ввести операции вычитания и деления , как операции обратные к операциям сложения и умножения соответственно. Но эти операции не будут однозначно определенны для любой пары натуральных чисел.

Свойство ассоциативности умножения натуральных чисел позволяет ввести понятие натуральной степени натурального числа: $n$-й степенью натурального числа $m$ называется натуральное число $k$, полученное в результате умножения числа $m$ самого на себя $n$ раз:

Для обозначения $n$-й степени числа $m$ обычно используется запись: $m^{n}$, в котором число $m$ называется основанием степени , а число $n$ - показателем степени .

Пример

Задание. Найти значение выражения $2^{5}$

Решение. По определению натуральной степени натурального числа это выражение можно записать следующим образом

$$2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=32$$

Натуральные числа и их свойства

Для счёта предметов в жизни используют натуральные числа. В записи любого натурального числа используются цифры $0,1,2,3,4,5,6,7,8,9$

Последовательность натуральных чисел, каждое следующее число в котором на $1$ больше предыдущего, образует натуральный ряд , который начинается с единицы (т.к. единица- самое маленькое натуральное число) и не имеет наибольшего значения, т.е. бесконечен.

Нуль не относят к натуральным числам.

Свойства отношения следования

Все свойства натуральных чисел и операций над ними следуют из четырех свойств отношений следования, которые были сформулированы в $1891$ г. Д.Пеано:

    Единица- натуральное число, которое не следует ни за каким натуральным числом.

    За каждым натуральным числом следует одно и только одно число

    Каждое натуральное число, отличное от $1$, следует за одним и только одним натуральным числом

    Подмножество натуральных чисел, содержащее число $1$, а вместе с каждым числом и следующее за ним число, содержит все натуральные числа.

Если запись натурального числа состоит из одной цифры его называют однозначным (например, $2,6.9$ и т.д.), если запись состоит из двух цифр-двузначным(например,$12,18,45$) и т.д. по аналогии. Двузначные, трехзначные, четырехзначные и т.д. числа называют в математике многозначными.

Свойство сложения натуральных чисел

    Переместительное свойство: $a+b=b+a$

    Сумма не изменяется при перестановке слагаемых

    Сочетательное свойство: $a+ (b+c) =(a+b) +c$

    Чтобы прибавить к числу сумму двух чисел, можно сначала прибавить первое слагаемое, а потом, к полученной сумме- второе слагаемое

    От прибавления нуля число не измениться и если прибавить к нулю какое- нибудь число, то получится прибавленное число.

Свойства вычитания

    Свойство вычитания суммы из числа $a-(b+c) =a-b-c$ если $b+c ≤ a$

    Для того, чтобы вычесть сумму из числа, можно сначала вычесть из этого числа первое слагаемое, а затем из полученной разности- второе слагаемое

    Свойство вычитания числа из суммы $(a+b) -c=a+(b-c)$, если $c ≤ b$

    Чтобы из суммы вычесть число, можно вычесть его из одного слагаемого, а к полученной разности прибавить другое слагаемое

    Если из числа вычесть нуль, то число не изменится

    Если из числа вычесть его само, то получится нуль

Свойства умножения

    Переместительное $a\cdot b=b\cdot a$

    Произведение двух чисел не изменяется при перестановке множителей

    Сочетательное $a\cdot (b\cdot c)=(a\cdot b)\cdot c$

    Чтобы умножить число на произведение двух чисел,можно сначала умножить его на первый множитель, а потом полученное произведение умножить на второй множитель

    При умножении на единицу произведение не изменяется $m\cdot 1=m$

    При умножении на нуль произведение равно нулю

    Когда в записи произведения нет скобок, умножение выполняют по порядку слева направо

Свойства умножения относительно сложения и вычитания

    Распределительное свойство умножения относительно сложения

    $(a+b)\cdot c=ac+bc$

    Для того чтобы умножить сумму на число,можно умножить на это число каждое слагаемое и сложить получившиеся произведения

    Например, $5(x+y)=5x+5y$

    Распределительное свойство умножение относительно вычитания

    $(a-b)\cdot c=ac-bc$

    Для того,чтобы умножить разность на число,множно умножить на это число уменьшаемое и вычитаемое и из первого произведения вычесть второе

    Например, $5(x-y)=5x-5y$

Сравнение натуральных чисел

    Для любых натуральных чисел $a$ и $b$ может выполняться только одно из трех соотношений $a=b$, $a

    Меньшим считается число, которое в натуральном ряду появляется раньше, а большим, которое появляется позже. Нуль меньше любого натурального числа.

    Пример 1

    Сравнить числа $a$ и $555$, если известно, что существует некоторое число $b$, причем выполняются соотношения: $a

    Решение : На основании указанного свойства,т.к. по условию $a

    в любом подмножестве натуральных чисел, содержащем хотя бы одно число, есть наименьшее число

    Подмножеством в математике называют часть множества. Говорят, что множество является подмножеством другого, если каждый элемент подмножества является одновременно и элементом большего множества

Часто для сравнения чисел находят их разность и сравнивают ее с нулем. Если разность больше $0$, но первое число больше второго, если разность меньше $0$, то первое число меньше второго.

Округление натуральных чисел

Когда полная точность не нужна, или не возможна,числа округляют,т.е заменяют их близкими числами с нулями на конце.

Натуральные числа округляют до десятков, сотен,тысяч и т.д

При округлеии числа до десятков его заменяют ближайшим числом,состоящим из целых десятков; у такого числа в разряде единиц стоит цифра $0$

При округлеии числа до сотен его заменяют ближайшим числом,состоящим из целых сотен; у такого числа в разряде десятков и единиц должна стоять цифра $0$. И т.д

Числа,до которых округляют данное называют приближенным значением числа с точностью до указанных разрядов.Например если округлять число $564$ до десятков то получим, что округлить его можно с недостатком и получить $560$, или с избытком и получить $570$.

Правило округления натуральных чисел

    Если справа от разряда, до которого округляют число, стоит цифра $5$ или цифра,большая $5$, то к цифре этого разряда прибавляют $1$; в противном случае эту цифру оставляют без изменения

    Все цифры, расположенные правее разряда, до которого округляют число,заменяют нулями