Астрономия прошлое и настоящее. Перевод с английского: Олег Санкин (МАК)

Среднее общее образование

Астрономия (10-11)

Главные астрономические открытия: со времен Галилея до наших дней

Материал подготовлен на основе вебинара астрофизика, доктора физико-математических наук, научного сотрудника ГАИШ МГУ, профессора РАН Сергея Борисовича Попова.

Уважаемые коллеги! В соответствии с приказом Министерства образования и науки РФ №506 от 7 июня 2017 года «О внесении изменений в федеральный компонент государственных образовательных стандартов начального общего, основного общего и среднего (полного) общего образования, утвержденный приказом Министерства образования Российской Федерации от 5 марта 2004 г. №1089» курс астрономии становится обязательным для изучения в старших классах средней школы. С полным текстом приказа вы можете ознакомиться .

Астрономия - наука наблюдательная, главное в ней - открытия, в результате которых происходит изменение старых представлений. Не все открытия неожиданные, так, последним открытиям - бозона Хиггса и гравитационных волн - предшествовала долгая подготовка. Но все-таки астрономические открытия, как правило, неожиданные, противоречащие здравому смыслу, меняющие прежнюю картину мира. Какие из них могут войти в десятку величайших в истории человечества?

1. Открытия Галилея: пятна на Солнце, горы на Луне, спутники Юпитера, фазы Венеры, звезды в Млечном Пути

В XVII веке люди впервые посмотрели в телескоп, многие увидели, что творится в небе. Но Галилей отнесся к наблюдениям наиболее ответственно, поэтому открытия маркируются его именем. Стало понятно, что Земля не является центром вращения всего на свете. Солнце же, во-первых, тоже вращается, а во-вторых - само оно несовершенно: на нем есть пятна! Неидеальность ключевого космического объекта того времени поразила современников Галилея больше всего. Стало видно, что и Луна не является идеальной сферой. Известие о фазах Венеры доказывало вращение Венеры вокруг Солнца, то есть - правоту Коперника. И далее: Млечный Путь оказался множеством слабых звезд, и это меняло наивное отношение к видимому миру: человеческий глаз не подогнан для восприятия всего сущего, не все можно увидеть и понять без приборов.

В 1837 г. впервые были осуществлены надёжные измерения годичного параллакса. Русский астроном Василий Яковлевич Струве (1793-1864) провел эти измерения для ярчайшей звезды Северного полушария Веги (a Лиры). Почти одновременно в других странах определили параллаксы еще двух звёзд, одной из которых была a Центавра. Эта звезда, которая с территории России не видна, оказалась ближайшей к нам. Даже у нее годичный параллакс составил всего 0,75ʺ. Под таким углом невооруженному глазу видна проволочка толщиной 1 мм с расстояния 280 м. Поэтому неудивительно, что столь малые угловые смещения так долго не могли заметить. Больше информации - Астрономия. 11 класс. Учебник (Линия УМК Б. А. Воронцова-Вельяминова)


4. Межзвездная среда

Астрономы начала XX века представляли межзвездную пустоту, допуская межзвездную пыль. В 1904 году Иоганн Гартман смог получить спектр, препарировать излучение и обнаружить газ: межзвездная среда существует. Это она затрудняет наблюдения. Без этого знания было бы невозможно построить верную схему нашей Галактики.

Бесплатные методические материалы:



5. Мир галактик

Еще 100 лет назад люди не были уверены в существовании разных галактик. Знаменитые дебаты Кертиса и Шелли о туманностях ничем не закончились, и только впоследствии подтвердилась правота Кертиса: гигантские туманности - это другие галактики. В 20-е годы Эдвин Хаббл обнаружил следы нескольких галактик, и до открытия расширения галактик оставался один шаг.



7. Реликтовое излучение

В 60-е годы XX века стало достоверно известно, что вся Вселенная расширяется: раньше в каждой ее точке плотность была больше и температура выше. Что важнее - количество или температура? Ученые Альфер и Гамов доказали, что излучение, доминировавшее после термоядерной реакции, никуда не девалось, обнаружить его очень легко (это шумы через радиоантенны все сталкивались), но надо было это распознать и назвать: реликтовое излучение. Астрономы получили еще один инструмент изучения Вселенной. Иллюстрация: Г.Гамов на фотографии из учебника Астрономия. 11 класс. Учебник (Линия УМК Б. А. Воронцова-Вельяминова )

В 1948 г. в работах Георгия Антоновича Гамова (1904-1968) и его сотрудников была выдвинута гипотеза о том, что вещество во Вселенной на начальных стадиях расширения имело не только большую плотность, но и высокую температуру. Так, спустя 0,1 с после начала расширения температура была около 3 1010 К. При столь высокой температуре взаимодействие фотонов высокой энергии, которых в горячем веществе было много, приводило к образованию пар всех известных частиц и античастиц: электрон - позитрон, нейтрино - антинейтрино и т. п. При аннигиляции этих пар снова рождались фотоны, а протоны и нейтроны, взаимодействуя с ними, превращались друг в друга. Больше информации - Астрономия. 11 класс. Учебник (Линия УМК Б. А. Воронцова-Вельяминова)



8. Нейтронные звезды

Их открывали несколько раз. Нейтронная звезда - такая звезда, где природа остановила изменения. Они вбирают в себя всю физику, с ними связано изучение радиопульсаров, регистрация гравитационных волн, точное время, теория поведения веществ при высокой плотности, процессы в сильном магнитном поле.

Излучение пульсара (разновидность нейтронных звезд, которое испускается в узком конусе, наблюдатель видит лишь в том случае, когда при вращении звезды этот конус направлен на него подобно свету маяка. Вещество пульсаров состоит из нейтронов, образовавшихся при соами, тесно прижатых друг к другу гравитационными силами. Диаметры таких нейтронных звезд всего 20-30 км, а плотность близка к ядерной и может превышать 1018 кг/м3. Таким образом, нейтронные звезды являются одним из тех объектов во Вселенной, которые предоставляют учёным возможность изучать поведение вещества в условиях, пока недостижимых в земных лабораториях. Больше информации - Астрономия. 11 класс. Учебник (Линия УМК Б. А. Воронцова-Вельяминова)



Главное открытие конца XX века. Это планеты, которые вращаются вокруг другой яркой звезды, из-за чего их плохо видно. Первая была открыта в 1995 году. Они совершенно непохожи на нас, гигантские газовые планеты, которые вращаются вокруг своей звезды очень быстро, круг - за несколько часов. Вероятно, они образовались где-то далеко, а потом как-то притянулись к звезде, - но как? Почему? Тайн много.

Теперь усилия ученых направлены на поиски планет, которые по своим размерам и массе похожи на Землю и находятся недалеко от звезд, что обеспечило бы на поверхности планеты условия, необходимые для существования жизни. С этой целью был запущен КА «Кеплер», на котором установлен фотометр, чувствительность которого составляет 10–5. Он позволяет заметить ослабление потока света от звезды, вызванное прохождением планет по ее диску, всего лишь на одну стотысячную его долю. Больше информации - Астрономия. 11 класс. Учебник (Линия УМК Б. А. Воронцова-Вельяминова)



10. Ускоренное расширение Вселенной

Говоря о будущем Вселенной, предлагают разные сценарии. Вселенная расширяется, но гравитация этому препятствует. Все зависит от того, хватит ли плотности вещества, или не хватит. Может быть, она порасширяется да и выйдет на долговременное постоянство? Ученые предполагали, что есть во вселенной ЧТО-ТО, заставляющее ее расширяться, работает какое-то отталкивание, антигравитация. В 1998 году открыли темную энергию (при взрыве белых сверхкарликов) - 70% среды связано с темной энергией, она-то и является компонентом плотности (условием гравитации).

Исследования позволили выяснить, что по своей природе темная энергия является практически однородной, в отличие от двух других составляющих Вселенной - «обычной» и темной материи, которые распределены в космическом пространстве неоднородно, образуя звезды, галактики и другие объекты. Можно считать, что тёмная энергия - это свойство самого пространства. Больше информации - Астрономия. 11 класс. Учебник (Линия УМК Б. А. Воронцова-Вельяминова)

В список не вошли: темное вещество и черные дыры, космические лучи и нейтрино, появление спектрального анализа, всеволновые наблюдения, квазары. Потому что эти явления - еще не до конца открыты. И если говорить о преподавании астрономии, то будем помнить: содержание этой дисциплины очень быстро устаревает и меняется - стабильный учебник вряд ли возможен.

Записала Людмила Кожурина

*С мая 2017 года корпорация «Российский учебник» объединила издательскую группу «ДРОФА-ВЕНТАНА», издательство «Астрель», компанию «ДРОФА - новая школа» и цифровую образовательную платформу «LECTA» . Главная миссия корпорации - всесторонняя поддержка педагогов России, создание лучших учебников, образовательных решений и социально значимых проектов. Вместе с педагогами мы помогаем закладывать фундамент успешного будущего российских детей на всех уровнях дошкольного и школьного образования.

Н. А. Сахибуллин

Казанский государственный университет
Содержание

Введение

Будущее поколение будет рассматривать 80-90-е годы прошлого столетия как период, определивший развитие астрономии в XXI веке. Это действительно так, потому что именно в те годы были получены научные результаты, которым по значимости трудно найти аналоги в истории астрономии XX века. Тот период знаменателен еще тем, что астрономы стали серьезно ставить вопрос о будущем нашей Земли не только в гносеологическом плане, но и для обеспечения безопасности всего человечества. К сожалению, диапазон мнений, особенно в массовой прессе, по поводу возможной опасности очень широк — от откровенно панических до полного игнорирования проблемы. Поэтому мы попытаемся дать краткое изложение фактического состояния дел.

Общие представления о происхождении Земли и Солнца

Астрономы еще не выработали окончательного мнения о детальных процессах образования Солнечной системы , поскольку ни одна из гипотез не способна объяснить многие ее особенности. Но в чем почти все астрономы единодушны, так это в том, что звезда и ее планетная система образуются из единого газопылевого облака , причем этот процесс может быть объяснен известными законами физики . Предполагается, что это облако имело вращение. В центре такого облака 4,7 млрд лет назад образовалось сгущение, которое вследствие закона всемирного тяготения начало сжиматься и притягивать к себе окружающие частицы. При достижении этим сгущением определенной массы в центре создаются большие температуры и давления, что приводит к выделению громадной энергии за счет термоядерных реакций превращения четырех протонов в атом гелия . Объект в этот момент вступает в ответственную стадию своей жизни — стадию звезды.

Вращение облака приводит к появлению вращающегося диска около звезды. В тех областях, где среднее расстояние между частицами диска мало, происходит их столкновение, что вызывает образование так называемых планетезималей размером примерно в 1 км , а затем и планет около звезды. Образование Земли потребовало около 50 млн лет. Часть несконденсировавшегося вещества диска (твердые и ледяные частицы) при движении могла падать на поверхность планет. Для Земли этот процесс длился примерно 700 тыс. лет. В результате масса Земли постоянно увеличивалась и главное — пополнялась водой и органическими соединениями. Около 2 млрд лет назад начали появляться примитивные растения, а спустя 1 млрд лет образовалась нынешняя азотно-кислородная атмосфера. Около 200 млн лет назад появились простейшие млекопитающие , 4 млн лет назад на ноги встал австралопитек , а 35 тыс. лет назад появился непосредственный предок Homo sapiens .

Для нас главным является следующее: можно ли описанную схему опровергнуть или подтвердить наблюдениями, если проверить, в частности, такие ее следствия:

а) около молодых звезд должны быть обнаружены протопланетные диски ;

б) около звезд, которые находятся на более поздней стадии развития, необходимо обнаружить планетные системы;

в) поскольку не все вещество протопланетного диска конденсируется в большие тела, особенно на периферии диска, то в Солнечной системе должны существовать остатки такого вещества.

Если бы данная статья писалась лет 30 назад, то автору трудно было бы найти такие подтверждения, так как существовавшие тогда телескопы и приемная аппаратура не могли зарегистрировать упомянутые выше объекты из-за их слабого блеска. И лишь в последнее десятилетие благодаря использованию космических телескопов , повышению точности астрономических измерений большинство предсказаний теории получили полное подтверждение.

Протопланетные диски. Поскольку в таких дисках есть пыль, то в излучении диска и звезды должен наблюдаться инфракрасный избыток цвета. Такие избытки обнаружены у нескольких звезд, в частности у яркой звезды северного полушария Веги . Для некоторых звезд Космическим телескопом им. Э. Хаббла были получены изображения таких дисков, например у многих звезд в туманности Ориона (рис. 1). Число открываемых дисков около звезд постоянно растет.

Планеты около звезд. Чтобы наблюдать традиционными методами планеты около звезд, необходимо создать телескопы очень больших диаметров — порядка сотни метров. Создание таких телескопов — это совершенно безнадежное дело как с технической, так и с финансовой точки зрения. Поэтому астрономы нашли выход из положения, разработав косвенные методы обнаружения планет. Известно, что два гравитационно связанных тела (звезда и планета) вращаются вокруг общего центра тяжести . Такое движение звезды можно установить лишь на основе чрезвычайно точных методов наблюдений. Такие методы на основе современной технологии были разработаны в самые последние годы, и для знакомства с ними мы отсылаем читателя к статье А.М. Черепащука .

С использованием этих методов сразу же наблюдали около 700 звезд. Результат превзошел самые лучшие ожидания. К концу января 2001 года открыты 63 планеты у 50 звезд. Основные сведения о планетах можно найти в статье .

Открытие трансплутоновых комет. В 1993 году были открыты объекты 1992QB и 1993FW, расположенные за пределами орбиты Плутона. Это открытие может иметь большие последствия, так как оно подтвердило существование на дальней периферии нашей Солнечной системы на расстоянии более 50 а.е. так называемого пояса Койпера и далее облака Оорта , где сосредоточились сотни миллионов комет, сохранившихся в течение 4,5 млрд лет и являющихся остатками того вещества, которое не смогло сконденсироваться в планеты.

Астрономическое прошлое Земли

После своего образования Земля прошла долгий путь развития. Было установлено, что естественный ход ее развития нарушался вследствие определенных геологических, климатических или биологических причин, приводящих к исчезновению растительности и животного мира. Причины большей части этих кризисов учеными объясняются как океаническими явлениями (понижение солености океанов, изменение химического состава в сторону увеличения токсичных элементов в водах океана и т.д.), так и земными явлениями (парниковый эффект , вулканическая деятельность и т.д.). В 50-х годах XX века делали попытки объяснить некоторые кризисы и астрономическими факторами — на основе многих астрономических явлений, зарегистрированных наблюдателями и описанных в исторических документах. Следует отметить, что за период в 2000 лет (c 200 года до н.э. по 1800 год н.э.) в различных источниках было зафиксировано 1124 важных астрономических факта, часть из которых можно связать с кризисными явлениями.

В настоящее время существует мнение, что кризис, имевший место 65 млн лет назад, когда исчезли рифовые кораллы и вымерли динозавры, был вызван столкновением крупного небесного тела (астероида ) с Землей. Долгое время астрономы и геологи искали подтверждение этого явления, пока не обнаружили большой кратер на полуострове Юкатан в Мексике диаметром в 300 км. Подсчеты показали, что для создания такого кратера был необходим взрыв, эквивалентный 50 млн т тротила (или 2500 атомных бомб, упавших на Хиросиму; взрыв 1 т тротила соответствует выделению энергии в 4 · 10 16 эрг ). Такая энергия могла бы выделиться при столкновении с астероидом размером в 10 км и имевшим скорость в 15 км/с. Этот взрыв поднял в атмосферу пыль, которая полностью затмила Солнце, что привело к понижению температуры Земли с последующим вымиранием живого. Оценка возраста этого кратера привела к цифре в 65 млн лет, что совпадает с моментом одного из биотических кризисов в развитии Земли.

Далее в 1994 году астрономы предсказали теоретически, а затем и пронаблюдали столкновение кометы Шумейкеров-Леви с Юпитером. Были ли подобные столкновения комет с Землей? Согласно американскому ученому Массе , за последние 6 тыс. лет подобные столкновения были. Особенно катастрофическим было падение кометы в океан около Антарктиды в 2802 году до н.э.

Таким образом, все изложенное выше приводит к следующим заключениям:

· астрономы имеют надежные подтверждения имеющимся представлениям о прошлом развитии Солнечной системы;

· это позволяет вполне определенно судить о будущем Солнечной системы. В частности, некоторые описанные явления ставят серьезный вопрос: несет ли Космос опасность для будущего нашей Земли?

Астрономическое будущее Земли

Из изложенного ясно, что наибольшие неприятности для человечества могут вызвать движущиеся малые небесные тела . Рассмотрим, насколько велик шанс столкновения.

Астероиды (или малые планеты). Основные характеристики этих объектов таковы: массы 1 — 10 23 г, размеры 1 см — 1000 км, средние скорости при приближении к Земле 10 км/с, кинетическая энергия объектов 5 · 10 9 — 5 · 10 30 эрг.

Астрономы установили, что в Солнечной системе число астероидов с диаметром больше 1 км около 30 тыс., меньших по размеру астероидов существенно больше — порядка сотни миллионов. Большая часть астероидов вращается по орбитам, расположенным между орбитами Марса и Юпитера, образуя так называемый пояс астероидов . Эти астероиды, естественно, не несут опасности столкновения с Землей.

Но несколько тысяч астероидов с диаметром более 1 км имеют орбиты, пересекающие орбиту Земли (рис. 2). Появление таких астероидов астрономы объясняют образованием зон неустойчивости в поясе астероидов . Приведем некоторые примеры.


Астрономия включает в себя изучение не только звезд , но и движение всех небесных и космических тел, а также их взаимосвязь между собой, развитие, строение и происхождение.

Еще с глубокой древности люди начали изучать строение Вселенной . Считается, что первыми астрономическими станциями были египетские таинственные пирамиды и пирамиды древних индейцев Майя. Возможно, они знали о звездах больше, чем современные астрономы и астрофизики. Даже древние жители Китая и Вавилона регулярно следили за звездами. Благодаря изучению небесных светил появились первые календари.

И сейчас попав в планетарий , мы испытываем благоговение перед необъятными просторами вселенной. И если раньше увидеть искусственно созданные звезды и их движение можно было, только в областных городах (и то далеко не во всех) побывав в планетарии, то сейчас благодаря появлению новейших технологий посетить мобильный цифровой планетарий можно практически в любом городе. Уникальные технологии теперь позволяют создавать буквально за один час передвижной (переносной, мобильный) цифровой планетарий для 20-30 человек. К тому же эффект от увиденного просто поражает, особенно детей, впервые попавших на такое шоу по астрономии . Кроме галактик, звезд, созвездий, планет и малых небесных тел цифровые планетарии позволяют проецировать на свой купол и разнообразные фильмы, естественно связанные с тематикой астрономии. Удивительно, красиво и впечатляюще!!!

С развитием астрономии и появлением телескопа изучение звездного неба стало намного проще. Мнение о том, что Земля представляет собой, абсолютно плоскую планетарную форму было опровергнуто Коперником, и мир в одночасье перевернулся. Небо стало интересовать людей все больше и больше. Как появилась Вселенная? Есть ли жизнь на других планетах? Как появилась жизнь на самой Земле? Смогут ли люди полететь в космос? Эти и другие вопросы мучили ученых на протяжении целых столетий.

Появилось множество производных от астрономии наук, таких как: астрометрия, астрология, астробиология, астрофизика и много других. Люди узнали о существовании новых планет , исследовали всю Солнечную систему, слетали в космос, побывали на Луне. И самое главное узнали о том, что мир не ограничен, что Вселенная бесконечная и на ее бескрайних просторах живут не только обычные звезды и планеты, что есть множество других космических тел и то, что люди возможно не одиноки.

Во всей Вселенной более триллиона галактик , а в них миллиарды и более солнечных систем и бесконечное количество звезд и планет, на которых возможно есть жизнь. У каждой планеты обязательно есть спутник, у некоторых планет их может быть больше двадцати. Галактики бывают нескольких видов: линзообразные, карликовые, в форме эллипса и другие. Галактика, в состав которой входит наша Солнечная система получила название - Млечный путь. И она относится к спиральным галактикам с перемычкой. Свое название она получила много тысяч лет назад от древнегреческой легенды о Зевсе, его жене Гере и незаконнорожденном сына Геракле. Астрономы узнали и то, что звезды бывают разные и разделили их на виды, а также подвиды. Звезды бывают нейтронные, карликовые разных цветов, гиганты и сверхгигантские, протозвезды и сверхновые звезды. Такие названия они получили из-за отличий в яркости, цвете, размерах и температуры. Каждая звезда рождается и умирает. После своей смерти некоторые звезды превращаются в некие черные дыры. Рождаются звезды из туманностей - межзвездных космических облаков, состоящих преимущественно из газа, плазмы и космической пыли.

Мировая астрономическая наука с каждым годом развивается все больше и сильнее, её взгляд устремляется всё дальше к краю вселенной (возможно, он существует). Теперь люди грезят о покорении и колонизации новых планет и о контакте с другими межгалактическими и межзвездными, возможно существующими цивилизациями.

Кто знает , может через сотни или тысячи веков, а может, вероятнее всего, и раньше, через десяток лет, астрономам наконец-то это удастся сделать.

Вопрос о том, что мы знаем (а чего мы не знаем) о космосе, естественно, волнует сейчас умы. И не только в плане, если так можно выразиться, «утилитарном», то есть в плане практического интереса к тем планетам , к которым в ближайшем будущем полетят космонавты, и к межпланетной среде, через которую будут летать их ракеты. Изучение Вселенной, понимание природы процессов, происходящих на отдаленных космических телах, представляют огромный познавательный интерес. Один известный астроном совершенно правильно в этой связи заметил: «Человек, в частности, тем отличается от животных, что иногда поднимает глаза к небу…»

Пока существует человечество, его всегда будет привлекать и манить Вселенная. Меня попросили написать, как я себе представляю развитие астрономии в течение ближайшего будущего. В наше время быть пророком в науке - дело достаточно трудное, если не безнадежное. История не раз жестоко смеялась над авторами научных предсказаний. Я позволю себе привести только один пример. В 1955 году в Англии вышла книга известного физика Томпсона «Предвидимое будущее». В этой книге очень интересной и увлекательной, дается прогноз развития науки, техники и общественных отношений на ближайшие 50 лет. Ее автор предсказывал, что первое проникновение человека в космос произойдет в самом конце XX столетия. И вот спустя всего лишь два года после того, как это было написано, был запущен первый искусственный спутник.

При прогнозировании успехов науки на сколько-нибудь длительный период исходить из чисто «академических» предпосылок совершенно недостаточно. Может быть, Томпсон и оказался бы прав, если бы развитие наук шло гармонически. Однако, как правило, так не бывает.

Как ни трудна, а главное, неблагодарна задача предсказать, как будет выглядеть древняя и вечно юная наука о небе, я попробую это сделать. По-видимому, мною руководит естественная человеческая слабость - попытаться приоткрыть завесу над будущим…

Итак, что можно ожидать от астрономии спустя два десятилетия? Чтобы как-то попытаться ответить на этот вопрос, следует, во-первых, попробовать выявить наиболее перспективные направления в развитии этой науки, во-вторых, осмыслить, какие успехи были достигнуты в астрономии в прошлом.

Революция в физике, происшедшая в первой трети двадцатого столетия оказала огромное влияние на астрономию: механика, ядерная физика, теория относительности повсеместно применялись в астрофизических исследованиях последних двух десятилетий. В это же время в практику астрономических наблюдений внедряются достижения радиоэлектроники. Новые методы и средства исследования позволили получить такие результаты, о которых раньше нельзя было даже мечтать.

Двадцать лет назад практически единственным источником наших сведений о природе небесных светил был идущий от них свет. Между тем можно было предполагать, что небесные тела, по крайней мере, некоторые, излучают и в «невидимых» участках спектра. Но астрономы ничего не знали об этом излучении, и такое неведение весьма ограничивало наши знания.

Крупнейшим успехом «небесной науки» последних лет было развитие радиоастрономии. Как видно из самого названия, эта наука занимается исследованием радиоволн, испускаемых некоторыми космическими объектами. Хотя радиоастрономия возникла в 1932 году, в то время ее еще не было. По-настоящему она стала развиваться только после второй мировой войны. И тем не менее успехи радиоастрономии поразительны.

Если бы не эта область астрономии, мы почти ничего так и не узнали бы о межзвездной материи, о вращении и динамике нашей звездной системы - Галактики, о туманностях, образовавшихся после грандиозных космических катастроф - взрывов так называемых «Сверхновых звезд», и о многом другом, не менее важном и интересном.

Радиоастрономия позволила обнаружить совершенно новые явления во Вселенной, например, удивительные звездные системы - радиогалактики, которые излучают радиоволны огромной мощности. Большинство радиогалактик отделяют от нас неимоверно огромные расстояния, исчисляемые миллиардами световых лет. Даже самые крупные оптические телескопы не в состоянии обнаружить многие из них. За короткое время радиоастрономия революционизировала древнюю науку о Вселенной. Сейчас нельзя себе представить дальнейшее ее развитие без прогресса радиоастрономических исследований. Уже проектируются и строятся гигантские радиотелескопы с диаметром зеркал в сотни метров.

Благодаря разработке так называемых «квантовых усилителей» в последнее время очень повысилась чувствительность приемной аппаратуры. Когда эта могучая техника исследований полностью вступит в строй, для радиоастрономии начнется новый этап, и кто знает, какие удивительные стороны Вселенной нам откроются. Мы будем принимать и исследовать радиоизлучение от звезд, во всяком случае, близких, получим наконец долгожданную информацию об удаленных уголках Вселенной и, видимо, разрешим давно уже наболевший вопрос о характере ее расширения. Кто знает, может быть, за областью, где Вселенная расширяется, находится область, где она сжимается? И вообще - конечна Вселенная или бесконечна?

И, конечно, будут обнаружены во Вселенной новые явления, о существовании которых мы сейчас не можем даже догадываться. Возникнут новые грандиозные проблемы, решать которые будет призвана астрономическая наука конца XXІ столетия.

Следует ожидать расцвета «астрономии невидимого», то есть исследований космических излучений, лежащих по обе стороны от видимого диапазона электромагнитных волн (светового диапазона). Тенденция развития современной астрономии состоит в предельном расширении спектральной области, в которой ведутся исследования излучения космических тел.

Раньше мы ничего не знали об излучении небесных светил в ультрафиолетовой, рентгеновской и еще более «жесткой» области спектра. Ибо такое излучение полностью поглощается земной атмосферой. Между тем наши знания о природе небесных светил, в особенности Солнца, не могут быть полными, если мы не знаем особенностей их «жесткого» излучения. Достаточно сказать, что солнечное ультрафиолетовое и рентгеновское излучение оказывает огромное влияние на верхние слои земной атмосферы, ионизируя и нагревая их. От этого, в частности, существенно зависит радиосвязь на коротких волнах.

Развитие ракетной техники открыло возможность поднимать на большие высоты приборы, измеряющие «жесткое» излучение, и тем самым «пробить» мешающие таким исследованиям плотные слои земной атмосферы. Так, в послевоенное время возникла и стала бурно развиваться новая наука, получившая название «ракетная астрономия».

Достижения ракетной астрономии 50 лет тому назад могли бы показаться фантастическими. Сейчас мы уже знаем с весьма большой точностью, что представляет собой ультрафиолетовое и рентгеновское излучение Солнца, как оно меняется со временем и каков механизм его влияния на земную атмосферу. С другой стороны, исследования этого излучения позволили существенно уточнить наши представления о физических условиях в солнечной атмосфере. А это имеет большое теоретическое и практическое значение.

Но это только первые шаги ракетной астрономии. Мы сейчас почти ничего не знаем об ультрафиолетовом и рентгеновском излучении звезд, туманностей и галактик. А это нужно знать, если мы хотим правильно представлять себе природу этих космических объектов. Поэтому мы вполне обоснованно можем предсказать, что в будущем ракетная астрономия будет занимать видное место в астрономических исследованиях. Будут построены подлинные космические лаборатории - искусственные спутники Земли, Луны и Солнца, на которых установят довольно большие автоматически действующие телескопы, способные измерять и анализировать все виды «жесткого» излучения от звезд, туманностей и других космических объектов.

Бесспорно сооружение таких устройств - дело нелегкое. Особенно трудно обеспечить с достаточно высокой точностью автоматическую «наводку» телескопов на нужную звезду или туманность. Ведь людей на таких станциях не будет. Научная информация будет передаваться на Землю с помощью телеметрии.

Особенно заманчива перспектива установки постоянно действующей научной станции на Луне. Эта станция может быть оснащена довольно большими телескопами и вполне современной лабораторией. Вполне возможно, что для нормальной работы такой станции потребуется небольшой штат специалистов - астрономов и физиков. Ведь далеко не всегда даже самая совершенная автоматика может заменить человека.

Очень заманчивыми являются перспективы развития так называемой гамма-астрономии. Под этим понимают исследования самых «жестких» гамма-лучей, которые, несомненно, должны испускаться некоторыми космическими телами. Такие лучи без поглощения проходят через всю атмосферу, поэтому их регистрация может производиться приборами, установленными на поверхности Земли. Недавно было обнаружено гамма-излучение от Солнца во время появления на нем активных образований, так называемых вспышек - гигантских взрывов в поверхностных слоях Солнца, которые уже давно исследуются астрономами и физиками. Но это только начало. Можно ожидать, что во Вселенной существуют такие объекты, которые испускают гамма-лучи очень большой мощности. Они очень далеки от нас, поэтому поток гамма-излучения от них невелик. Но существенное повышение чувствительности приемников такого излучения и развитие новых методов его обнаружения открывают сейчас реальную возможность возникновения гамма-астрономии.

Важность таких исследований состоит в том, что они позволяют изучать поведение космических лучей в глубинах Вселенной. Можно полагать, что через два десятилетия гамма-астрономия обогатит науку рядом открытий первостепенной важности.

Хотелось бы еще сказать несколько слов о « » астрономии. Такой астрономии пока еще нет, но есть все основания полагать, что в ближайшем будущем она возникнет. Нейтрино - это элементарная частица, испускаемая некоторыми ядрами при так называемом бета-распаде. Хотя теоретически существование такой частицы было предсказано давно, обнаружить ее удалось совсем недавно.

Дело в том, что эта частица почти неуловима, так как она практически не взаимодействует с веществом. Например, нейтрино может спокойно пройти через все (не говоря уже о Земле) с ничтожной вероятностью быть поглощенным.

С другой стороны, мы теперь знаем, что причина излучения Солнцем (так же, как и другими звездами) огромного количества энергии - , идущие в его недрах. При таких реакциях образуется, в частности, весьма большое количество нейтрино, почти беспрепятственно покидающих Солнце: оно для них почти прозрачно. Подсчитано, что Солнце и звезды излучают примерно такой же поток энергии в форме нейтрино, какой они излучают в виде света и тепла. Так как мы очень близки к Солнцу и «купаемся» в его лучах, то одновременно мы «купаемся» и в его нейтринном излучении.

Но как же обнаружить этот мощный поток нейтрино? Сделать это далеко не просто, недаром эта удивительная элементарная частица так долго ускользала от экспериментаторов. И все же положение не безнадежно. Быстро прогрессирующая техника современного физического эксперимента позволит в течение ближайших одного-двух десятилетий зарегистрировать и исследовать солнечные нейтрино. Тем самым мы как бы заглянем в недра Солнца, где нейтрино образуются, уточним, наши представления о происходящих там ядерных реакциях и - как знать! - быть может, выявим неожиданности, не лезущие ни в какие ворота. А это, пожалуй, заманчивее всего…

Иначе говоря, то, что только недавно могло казаться безудержной фантазией, - возможность непосредственно наблюдать солнечные и звездные недра - нейтринная астрономия сделает явью.

Но довольно об «астрономии невидимого». Конечно, это направление развития астрономии является одним из важнейших, но далеко не единственным. В частности, в настоящее время мы являемся свидетелями возникновения принципиально нового направления в астрономии, так называемой экспериментальной астрономии. Но об этом читайте уже в нашей следующей статье.

Если Уинстон Черчиль смог назвать Россию и её народы " загадкой, обернутой в тайну внутри загадки ", то можно спокойно биться об заклад, что развитие любительской астрономии в моей стране остается в значительной степени неизвестным большинству читателей "SКY&Теlеsсоре". Я надеюсь рассеять часть этой тайны, рассказав нашу историю.
Говорилось, что отцом Российских любительских астрономов был Архиепископ Афанасий, который жил в северном портовом городе Архангельск, всего лишь в 150 км от Полярного круга. В 1692г он построил обсерваторию, оборудованную несколькими небольшими рефракторами, но его возможности наблюдать были ограничены церковными занятиями и вторжениями шведских армий.
Тем временем царь-реформатор Петр Великий поднимал Россию до статуса великой державы. Хотя его методы были резкими и часто грубыми, он основал столицу Санкт-Петербург, основал много школ, и заложил основу для Российской Академии Наук, куда были приглашены многие известные ученые Европы. Петр Великий время от времени наблюдал в телескоп, и во время его правления астрономия была довольно модной. В то время не было ничего необычного в том, что дворяне строили частные обсерватории.
Некоторые последователи Петра также проявляли интерес к астрономическим наблюдениям. Императрица Анна Иоановна часто приглашала французского астронома Joseрh Dеlisle показать ей кольца Сатурна и другие яркие звездные объекты в длиннофокусный телескоп Ньютона. Но следует признать, что это была активность дилетантов, и не было сделано никаких длительных вкладов в науку российскими любителями астрономии в 18 веке.
Но это скоро должно было измениться. Морской офицер Платон Гамалея независимо изобрел ахроматический объектив для рефрактора, изобретение которого западные историки часто приписывают исключительно англичанам Честеру Муру Холлу и Джону Доллонду. Гамалея также интересовался метеоритами, утверждая, что они имеют астероидное происхождение, несмотря на заявление Антуана Лавуазье, сделанное Французской Академии Наук, что "камни не могут падать с неба".
В 1879г Василий Энгельгардт, присяжный поверенный из Смоленска, основал впечатляющую обсерваторию в городе Дрезден (тогда Саксония, ныне Германия). Энгельгардт заказал 12-и дюймовый рефрактор у известного Дублинского изготовителя телескопов Томаса Гребба. С этим впечатляющим телескопом Энгельгардт посвятил себя наблюдениям. В течение 18-и лет он опубликовал три тома скрупулезных наблюдений комет, астероидов, туманностей и двойных звезд. Он завещал все свое астрономическое оборудование и 50000 рублей Казанскому университету, находящемуся в 600км восточнее Москвы, где обсерватория, носящая его имя, работает и по сей день.
Щедрость другого любителя также имела последствия, действующие по сей день. В конце 19-го века в предместье Санкт-Петербурга, в Пулково, располагалась выдающаяся Российская обсерватория. Широта, на которой расположено Пулково, 60 градусов, выдвинула сильную потребность в расположенной южнее обсерватории, и в 1906г астроном Алексей Ганский был послан на Крымский полуостров для поиска подходящего места.

Вскоре после его приезда он набрел на два купола. Как оказалось, Ганский остановился перед частной обсерваторией высокопоставленного правительственного чиновника, Николая Мальцова. Во время их первой встречи Мальцов предложил свою обсерваторию в дар Пулковской обсерватории, и даже добавил прилегающую территорию для дальнейшего развития. В наши дни это место - Симеизская наблюдательная станция Крымской астрофизической обсерватории является домом для 24 и 40-дюймовых рефлекторов, используемых Украинской Академией Наук.


В погоне за лунной тенью

Одним из наиболее продвинутых Российских любителей 19-го века был Федор Семенов, сын преуспевающего промышленника в Курске. Несмотря на то, что он был самоучкой, Семенов смог сделать 4-х дюймовый рефрактор "из ничего", что является подвигом даже для нынешних дней. Его страстью были солнечные затмения. Семенов был награжден Золотой медалью Российского географического общества за расчеты видимости всех затмений, которые должны были произойти в северном полушарии с 1840 по 2001год.
Николай Донич, казенный рабочий, посвятил себя погоне за затмениями задолго до того, как коммерческие авиалинии сделали легкими путешествия по миру. Преследуя бегущую лунную тень, Донич путешествовал в такие экзотические места, как Суматра в голландской Восточной Индии (ныне Индонезия). Несмотря на свой любительский статус, Санкт-Петербургская Академия наук в 1905 году доверила Доничу возглавить экспедиции на затмения в Испанию и Египет - ему даже придали профессионального астронома в помощники!
14 Августа 1887г. полоса полного затмения прошла через сердце России и вызвала рост общественного интереса к астрономии, что привело к созданию первого астрономического общества в стране. Жители Нижнего Новгорода наняли три паровых судна для 150км путешествия по Волге, чтобы увидеть затмение, и на обратном пути между пассажирами возникли горячие дискуссии. Ужасаясь громадному невежеству сельского населения, с которым им пришлось столкнуться, Платон Демидов, местный поверенный и банкир, а так же два молодых школьных учителя решили создать общество для распространения знаний астрономии в массах.
Но они столкнулись с многочисленными препятствиями. Такое научное общество могло быть создано только в университетском городе. В нижнем Новгороде были церкви, монастыри, кремль и драматический театр - но не было университета. К счастью, связи Демидова в Петербурге привели к отказу от этого требования и официальный устав "Нижегородского кружка любителей физики и астрономии" был утвержден год спустя. Демидов подарил свою личную библиотеку и небольшой телескоп, а члены собрали деньги на покупку 4-х дюймового рефрактора фирмы Мерц.

Кружок в Нижнем Новгороде пережил революцию большевиков и последовавшие гражданскую войну и террор. Члены публиковали результаты работы по переменным звездам, переписывались с зарубежными любителями астрономии, и подписывались на зарубежные журналы - довольно необычная для того сложного времени активность. Наиболее известными они стали за их ежегодно издаваемый с 1895г астрономический календарь. Когда советские астрономы отправили в 1930г открытое письмо папе Пию XI, обвиняя римско-католическую церковь в сожжении Джордано Бруно и в преследовании Галилея, Ватикан ответил: "В СССР нам известны только астрономы из Нижнего Новгорода, с которыми мы обмениваемся публикациями. Другие лица, называющие себя "российскими астрономами", нам неизвестны".
В 1890г., т.е. два года спустя, после того как Нижний Новгород получил свой кружок, было организовано Российское Астрономическое Общество. Хотя членство в нем не ограничивалось одними профессионалами, любителю было практически невозможно собрать пять рекомендаций членов, которые требовались всего лишь для признания. Единственным исключением был 15-летний киевский школьник, который первым в 1901г доложил о появлении Новой в Персее. За это открытие он получил членство в Российском Астрономическом Обществе, а царь Николай Второй подарил ему телескоп Цейса.
В 1908г был основан "Московский Кружок любителей астрономии", за которым год спустя последовало "Российское общество любителей мироведения" или РОЛМ в Петербурге. Слово "мироведение" примерно означает "исследование вселенной", что отражает широкие научные интересы его основателя Николая Морозова. В наказание за свою революционную деятельность, Морозов провел 22 года в одиночном заключении, и после своего освобождения из тюрьмы в 1905г он посвятил науке оставшиеся годы своей жизни. По достижению числа своих членов в 700 человек, "Мироведение" основало обсерваторию, оснащенную 7-и дюймовым рефрактором фирмы Мерц, регулярно выпускало результаты наблюдений и издавало популярный журнал "Мироведение".

Советская Эра

Революция большевиков в 1917 году принесла шумные изменения по каждому из аспектов Российской жизни, включая астрономию. Режимы Ленина и Сталина потребовали, чтобы всякое научное исследование было подчинено задаче "социалистического строительства" и астрономы были обязаны брать торжественные клятвы, вроде " я клянусь, что я охарактеризую изменения яркости 150-ти недавно обнаруженных переменных звезд ". Каждое новое открытие демонстрировало возможность превосходства социализма над капитализмом. Когда петроградский астроном С.М.Селиванов нашел комету 1 сентября 1919, официальные государственные лица раструбили это достижение по всему миру.
Борис Кукаркин, нижегородский любитель, в 1928 году стал издавать бюллетень, названный "Переменные Звезды". Далее он превратился в профессиональный журнал, а сам Кукаркин стал известным профессиональным астрономом. В это же десятилетие члены Московского Общества Любителей Астрономии создали " Коллектив Наблюдателей". Несколько из его членов, среди них Борис А. Воронцов-Велиаминов и Павел П. Паренаго, стали всемирно признанными авторитетами в астрономии. Кое-какие выводы относительно характера того времени могут быть сделаны из последнего предложения книги Паренаго " Мир звезд ", который охарактеризовал И.Сталина как " самого великого гения всего человечества ".
В те темные дни многие из основных любителей были репрессированы. В 1928 Российское Астрономическое Общество было распущено, двумя годами позже за ним последовало и РОЛМ. Однако "Мироведение" продолжало появляться в течение нескольких последующих лет и, чтобы держать читателей в курсе астрономических событий в западных странах, содержало некоторые переводы с иностранных журналов. Однако идеология проникла и сюда. Появляющиеся теории расширяющейся вселенной критиковались как несовместимые с марксистско-ленинской догмой. "Мироведение" перестало публиковаться во время пика сталинского террора. Его заключительный выпуск вышел с передовой статьей со зловещим названием "Для полного подавления саботажа на астрономическом фронте ".
После прекращения публикации "Мироведения" советские любители не имели никакого журнала до 1965, когда появился популярный журнал "Земля и Вселенная", выходящий дважды в месяц. Однако его редакторы всегда придавали больший акцент геологии и метеорологии, нежели астрономии. В расцвете журнала его тираж превысил 50000 экз., но в последние годы резко упал до уровня менее, чем 1000 экз.

В 1932 г. любители и профессиональные астрономы всего Советского Союза объединились во Всесоюзное Астрономо-Геодезическое Общество, иначе известное под аббревиатурой ВАГО. Первое научное общество, созданное в советское время, ВАГО обосновало отделения в десятках городов, и его Центральный Совет в Москве координировал визуальные наблюдения любителей переменных звезд, метеоров и серебристых облаков под руководством профессионалов. Вошедшее в 1938 году в состав Советской Академии Наук, ВАГО издавало руководства по наблюдению, организовывало экспедиции на затмения и регулярно проводило конференции и конгрессы. Численность в ВАГО достигла максимума в 1980-е годы, когда оно имело приблизительно 70 разбросанных повсюду своих отделений. Юношеская секция, созданная в 1965, координировала работы среди изолированных кружков юных астрономов.

Традиции телескопостроения

Первая в России астрономическая оптика была, по всей видимости, изготовлена Яковом Брюсом - одним из приближенных Петра Великого, который в 1733 году "слепил" вогнутое зеркало для телескопа-рефлектора. Но первым настоящим любителем телескопостроения в нашей стране был Иван Кулибин. Механик-самоучка из Нижнего Новгорода, Кулибин в 1767 году сумел заполучить в свои руки телескоп-рефлектор системы Грегори. Он смог определить состав, из которого изготовлено его металлическое зеркало - твердый, ломкий сплав меди и олова, и начал строить станок для шлифовки и полировки зеркал и линз. Кулибин также обработал стекло марки флинт для создания ахроматических объективов.
Несмотря на талант людей, подобных Кулибину, Россия на много десятилетий отставала в изготовлении телескопов по сравнению с Европой и Соединенными Штатами. В XX веке под куполами наших больших обсерваторий были размещены инструменты, сделанные немецкими фирмами - Fraunhofer, Merz, и Zeiss или американскими, например Альваном Кларком. И только в 1904 году Юрием Миркаловым был основано первое Российское предприятие по изготовлению телескопов, " Русская Урания ". Перед упадком фирмы в 1917 году, её цеха изготовили более чем сотню телескопов и множество куполов для обсерваторий, хотя Миркалов и получил все объективы из-за границы.

Телескопы-рефлекторы системы Ньютона были популяризированы в России Александром Чикиным. Через четыре года после того, как он в 1911 обработал своё первое зеркало, Чикин издаёт книгу "Отражательные телескопы: изготовление рефлекторов доступными для любителя средствами". В течение десятилетий эта книга, являлась стандартом не только для любителей, но и для профессионалов. Известный оптик-конструктор Дмитрий Максутов, изобретатель катадиоптрических (зеркально-линзовых) телескопов, используемых в настоящее время во всем мире, был только один из многих, кто нашли вдохновение и руководство на страницах небольшой "библии" Чикина.

В 1930-ые годы, одновременно с США, любительское телескопостроение стало популярным в России. Ведущий сторонником этих усилий был цитогенетик и профессор Михаил Навашин. Его книга " Телескоп любителя астрономии" выдержала несколько изданий. Московский художник Михаил Шемякин также играл видную роль, и под его руководством ВАГО издало серию " Любительские телескопы".

В советские времена любитель мог построить телескоп практически бесплатно, просто записавшись в местный клуб любителей телескопостроения, которые существовали в каждом большом городе. Хорошо оборудованные клубы имели станки для изготовления зеркал и принадлежностей. Члены клуба обычно изготавливали 4-х и 6-ти дюймовые зеркала, а некоторые замахивались и на большие апертуры до 16 дюймов. Известный Среди этих клубов был известен клуб телескопостроения им Д. Максутова, основанный в 1973 Леонидом Сикоруком, режиссером из Новосибирска. Его члены взяли на вооружение передовые схемы телескопов, включая камеры Шмидта и Райта, Долла-Кирхема и Ричи-Кретьена и даже спектрогелиограф. Книга Сикорука "Телескопы для любителей астрономии ", изданная в 1982г., остается популярной и по сей день, а его документальный фильм "Телескопы" был транслирован по телевидению на весь Советский Союз.

В 1980 Л.Сикорук убедил директора Новосибирского предприятия, которое производило артиллерийские и ружейные прицелы, начать производство телескопов для любителей астрономии, и это событие стало важной вехой для продвижения российского телескопостроения. Имея фирменный знак ТАЛ, тысячи этих инструментов скоро стали широко доступны в магазинах. По одному или несколько из них нашли свой путь в каждую российскую школу, астрономический клуб, планетарий. Экспорт линейки телескопов ТАЛ начался в 1993 году, а 6-дюймовая модель Ньютона была положительно рассмотрена в этом журнале ("SКY&Теlеsсоре" за декабрь 1997 года, страница 57).

Анатолий Санкович - другой энтузиаст, который направил свою страсть к телескопам в русло коммерческого предприятия. Изготовив многочисленные сложные оптические системы типа камер Райт-Шмидта, Санкович соединил свои усилия с другими телескопостроителями Москвы, чтобы запустить Svеma-Luxе http://www.telescope.newmail.ru/eng/eng.htm l Компания теперь поставляет в производственный кооператив INTES параболические главные зеркала, имеющие апертуры до 20 дюймов.

Можно вообразить, что, поскольку 20-ое столетие близко к окончанию, также близки к окончанию и возможности для создания новых оптических схем телескопов. Но в последние годы П.П.Аргунов из Одессы и Юрий Клевцов из Новосибирска изобрели катадиоптрический телескоп с полностью сферической оптикой, который обещает быть экономически более выгодным для производства, чем Максутов-Кассегрен, обеспечивая сопоставимое качество. Новосибирский приборостроительный завод http://www.npz.sol.ru/ недавно добавил 8-дюймовую апертуру "Клевцова" к линейке любительских телескопов ТАЛ, тем самым соединив изобретательность одиночки и государственное предприятие в строящейся новой России.

Сомнительное, но обнадеживающее будущее

С распадом в 1991 году Советского Союза, ВАГО потеряло свой "всесоюзный" статус и деятельность некоторых из его отделений прекратилась. Начался черный период для астрономии. За редким исключением, российские любители, которые хотели иметь первоклассные телескопы, должны были делать их собственными руками - все же некоторые из клубов телескопостроения сохранились, а вот сырье и принадлежности больше не были бесплатны. При таких неблагоприятных условиях могло бы показаться, что любительская астрономия в России будет медленно и долго угасать.

Во время экономического хаоса, который все еще преобладает в нашей стране, большинство россиян продолжают бороться за каждодневный кусок хлеба, и имеют немного денег для хобби. Но, несмотря на эти трудности, мы видим много обнадеживающих событий. Некоторые прежние отделения ВАГО выжили как независимые общества, и с 1995 сформировалось много новых любительских групп. Цены готовых телескопов и принадлежностей, хотя очень высокие, больше не являются вне пределов досягаемости. Наши растущие ряды любителей обозревать небеса включают одного наблюдателя, который установил высокий стандарт качества наблюдений. Со своего участка на Северном Кавказе, Тимур Крячко к настоящему моменту обнаружил дюжину астероидов, один из которых он обнаружил при прохождении службы в Советской Армии. Крячко осуществляет мониторинг переменных звезд, охотится за сверхновыми, и иногда курирует "экспедиции" любителей к темному небу на Кавказ и Крым.

Благодаря Интернету, любители со всей нашей обширной страны обмениваются сообщениями и устанавливают связи. Спонсируемые школами астрономические "олимпиады" также играет важную роль в росте рядов юных астрономов ("SКY&Теlеsсоре" за март 2000, страница 86). Победители на местном уровне едут в Москву, чтобы участвовать в конкурсе за общее признание. Добсоны, совместные выезды на наблюдения, марафон Мессье - все, что было чуждо для нас не слишком много лет назад - становится все более и более популярным.

В течение прошлых пяти лет Московский Астрономический Клуб, в настоящее время самая большая любительская группа в России, спонсировала астрономический фестиваль в Звенигороде, 50 км к западу от Москвы http://astroclub.ru/astrofest

Горстка энтузиастов также объединилась, чтобы издать ежемесячный журнал "Звездочёт", который посвящен исключительно любительской астрономии http://www.astronomy.ru/

Самое время для процветания астрономии и планетариев в России.


Девиз Британских Королевских Воздушных сил "через тернии к звездам" мог конечно быть нашим также.

"SКY&Теlеsсоре", сентябрь 2001 года, стр.66-73