What is the derivative of a complex function. Solving the derivative for dummies: definition, how to find, examples of solutions

Derivation of the formula for the derivative of a power function (x to the power of a). Derivatives from roots of x are considered. Formula for the derivative of a higher order power function. Examples of calculating derivatives.

Content

See also: Power function and roots, formulas and graph
Power Function Graphs

Basic formulas

The derivative of x to the power of a is equal to a times x to the power of a minus one:
(1) .

The derivative of the nth root of x to the mth power is:
(2) .

Derivation of the formula for the derivative of a power function

Case x > 0

Consider a power function of the variable x with exponent a:
(3) .
Here a is an arbitrary real number. Let's first consider the case.

To find the derivative of function (3), we use the properties of a power function and transform it to the following form:
.

Now we find the derivative using:
;
.
Here .

Formula (1) has been proven.

Derivation of the formula for the derivative of the root of degree n of x to the degree of m

Now consider a function that is the root of the following form:
(4) .

To find the derivative, we transform the root to a power function:
.
Comparing with formula (3) we see that
.
Then
.

Using formula (1) we find the derivative:
(1) ;
;
(2) .

In practice, there is no need to memorize formula (2). It is much more convenient to first transform the roots to power functions, and then find their derivatives using formula (1) (see examples at the end of the page).

Case x = 0

If , then the power function is defined for the value of the variable x = 0 . 0 Let's find the derivative of function (3) at x =
.

. 0 :
.
To do this, we use the definition of a derivative:

Let's substitute x =
.
In this case, by derivative we mean the right-hand limit for which .
So we found:
So we found:
From this it is clear that for , .
(1) .
At , . 0 .

This result is also obtained from formula (1):< 0

Therefore, formula (1) is also valid for x =
(3) .
Case x
,
Consider function (3) again:

For certain values ​​of the constant a, it is also defined for negative values ​​of the variable x. 3 Namely, let a be a rational number. Then it can be represented as an irreducible fraction: 1 where m and n are integers that do not have a common divisor.
.
It is also defined for negative values ​​of the variable x.

Let us find the derivative of the power function (3) for and for rational values ​​of the constant a for which it is defined. To do this, let's represent x in the following form:
.
Then ,
.
We find the derivative by placing the constant outside the sign of the derivative and applying the rule for differentiating a complex function:

.
Here . But
.
Since then
.
Then
.
That is, formula (1) is also valid for:
(1) .

Higher order derivatives

Now let's find higher order derivatives of the power function
(3) .
We have already found the first order derivative:
.

Taking the constant a outside the sign of the derivative, we find the second-order derivative:
.
Similarly, we find derivatives of the third and fourth orders:
;

.

From this it is clear that derivative of arbitrary nth order has the following form:
.

notice, that if a is natural number , then the nth derivative is constant:
.
Then all subsequent derivatives are equal to zero:
,
at .

Examples of calculating derivatives

Example

Find the derivative of the function:
.

Let's convert roots to powers:
;
.
Then the original function takes the form:
.

Finding derivatives of powers:
;
.
The derivative of the constant is zero:
.

After preliminary artillery preparation, examples with 3-4-5 nestings of functions will be less scary. The following two examples may seem complicated to some, but if you understand them (someone will suffer), then almost everything else in differential calculus will seem like a child's joke.

Example 2

Find the derivative of a function

As already noted, when finding the derivative of a complex function, first of all, it is necessary Right UNDERSTAND your investments. In cases where there are doubts, I remind you of a useful technique: we take the experimental value of “x”, for example, and try (mentally or in a draft) to substitute this value into the “terrible expression”.

1) First we need to calculate the expression, which means the sum is the deepest embedding.

2) Then you need to calculate the logarithm:

4) Then cube the cosine:

5) At the fifth step the difference:

6) And finally, the outermost function is the square root:

Formula for differentiating a complex function are applied in reverse order, from the outermost function to the innermost. We decide:

There seems to be no errors:

1) Take the derivative of the square root.

2) Take the derivative of the difference using the rule

3) The derivative of a triple is zero. In the second term we take the derivative of the degree (cube).

4) Take the derivative of the cosine.

6) And finally, we take the derivative of the deepest embedding.

It may seem too difficult, but this is not the most brutal example. Take, for example, Kuznetsov’s collection and you will appreciate all the beauty and simplicity of the analyzed derivative. I noticed that they like to give a similar thing in an exam to check whether a student understands how to find the derivative of a complex function or does not understand.

The following example is for you to solve on your own.

Example 3

Find the derivative of a function

Hint: First we apply the linearity rules and the product differentiation rule

Full solution and answer at the end of the lesson.

It's time to move on to something smaller and nicer.
It is not uncommon for an example to show the product of not two, but three functions. How to find the derivative of the product of three factors?

Example 4

Find the derivative of a function

First we look, is it possible to turn the product of three functions into the product of two functions? For example, if we had two polynomials in the product, we could open the brackets. But in the example under consideration, all the functions are different: degree, exponent and logarithm.

In such cases it is necessary sequentially apply the product differentiation rule twice

The trick is that by “y” we denote the product of two functions: , and by “ve” we denote the logarithm: . Why can this be done? Is it really - this is not a product of two factors and the rule does not work?! There is nothing complicated:


Now it remains to apply the rule a second time to bracket:

You can also get twisted and put something out of brackets, but in this case it’s better to leave the answer exactly in this form - it will be easier to check.

The considered example can be solved in the second way:

Both solutions are absolutely equivalent.

Example 5

Find the derivative of a function

This is an example for an independent solution; in the sample it is solved using the first method.

Let's look at similar examples with fractions.

Example 6

Find the derivative of a function

There are several ways you can go here:

Or like this:

But the solution will be written more compactly if we first use the rule of differentiation of the quotient , taking for the entire numerator:

In principle, the example is solved, and if it is left as is, it will not be an error. But if you have time, it is always advisable to check on a draft to see if the answer can be simplified?

Let's reduce the expression of the numerator to a common denominator and get rid of the three-story structure of the fraction:

The disadvantage of additional simplifications is that there is a risk of making a mistake not when finding the derivative, but during banal school transformations. On the other hand, teachers often reject the assignment and ask to “bring it to mind” the derivative.

A simpler example to solve on your own:

Example 7

Find the derivative of a function

We continue to master the methods of finding the derivative, and now we will consider a typical case when the “terrible” logarithm is proposed for differentiation

Very easy to remember.

Well, let’s not go far, let’s immediately consider the inverse function. Which function is the inverse of the exponential function? Logarithm:

In our case, the base is the number:

Such a logarithm (that is, a logarithm with a base) is called “natural”, and we use a special notation for it: we write instead.

What is it equal to? Of course, .

The derivative of the natural logarithm is also very simple:

Examples:

  1. Find the derivative of the function.
  2. What is the derivative of the function?

Answers: The exponential and natural logarithm are uniquely simple functions from a derivative perspective. Exponential and logarithmic functions with any other base will have a different derivative, which we will analyze later, after we go through the rules of differentiation.

Rules of differentiation

Rules of what? Again a new term, again?!...

Differentiation is the process of finding the derivative.

That's all. What else can you call this process in one word? Not derivative... Mathematicians call the differential the same increment of a function at. This term comes from the Latin differentia - difference. Here.

When deriving all these rules, we will use two functions, for example, and. We will also need formulas for their increments:

There are 5 rules in total.

The constant is taken out of the derivative sign.

If - some constant number (constant), then.

Obviously, this rule also works for the difference: .

Let's prove it. Let it be, or simpler.

Examples.

Find the derivatives of the functions:

  1. at a point;
  2. at a point;
  3. at a point;
  4. at the point.

Solutions:

  1. (the derivative is the same at all points, since it is a linear function, remember?);

Derivative of the product

Everything is similar here: let’s introduce a new function and find its increment:

Derivative:

Examples:

  1. Find the derivatives of the functions and;
  2. Find the derivative of the function at a point.

Solutions:

Derivative of an exponential function

Now your knowledge is enough to learn how to find the derivative of any exponential function, and not just exponents (have you forgotten what that is yet?).

So, where is some number.

We already know the derivative of the function, so let's try to reduce our function to a new base:

To do this, we will use a simple rule: . Then:

Well, it worked. Now try to find the derivative, and don't forget that this function is complex.

Happened?

Here, check yourself:

The formula turned out to be very similar to the derivative of an exponent: as it was, it remains the same, only a factor appeared, which is just a number, but not a variable.

Examples:
Find the derivatives of the functions:

Answers:

This is just a number that cannot be calculated without a calculator, that is, it cannot be written down in a simpler form. Therefore, we leave it in this form in the answer.

    Note that here is the quotient of two functions, so we apply the corresponding differentiation rule:

    In this example, the product of two functions:

Derivative of a logarithmic function

It’s similar here: you already know the derivative of the natural logarithm:

Therefore, to find an arbitrary logarithm with a different base, for example:

We need to reduce this logarithm to the base. How do you change the base of a logarithm? I hope you remember this formula:

Only now we will write instead:

The denominator is simply a constant (a constant number, without a variable). The derivative is obtained very simply:

Derivatives of exponential and logarithmic functions are almost never found in the Unified State Examination, but it will not be superfluous to know them.

Derivative of a complex function.

What is a "complex function"? No, this is not a logarithm, and not an arctangent. These functions can be difficult to understand (although if you find the logarithm difficult, read the topic “Logarithms” and you will be fine), but from a mathematical point of view, the word “complex” does not mean “difficult”.

Imagine a small conveyor belt: two people are sitting and doing some actions with some objects. For example, the first one wraps a chocolate bar in a wrapper, and the second one ties it with a ribbon. The result is a composite object: a chocolate bar wrapped and tied with a ribbon. To eat a chocolate bar, you need to do the reverse steps in reverse order.

Let's create a similar mathematical pipeline: first we will find the cosine of a number, and then square the resulting number. So, we are given a number (chocolate), I find its cosine (wrapper), and then you square what I got (tie it with a ribbon). What happened? Function. This is an example of a complex function: when, to find its value, we perform the first action directly with the variable, and then a second action with what resulted from the first.

In other words, a complex function is a function whose argument is another function: .

For our example, .

We can easily do the same steps in reverse order: first you square it, and I then look for the cosine of the resulting number: . It’s easy to guess that the result will almost always be different. Important Feature complex functions: when the order of actions changes, the function changes.

Second example: (same thing). .

The action we do last will be called "external" function, and the action performed first - accordingly "internal" function(these are informal names, I use them only to explain the material in simple language).

Try to determine for yourself which function is external and which internal:

Answers: Separating inner and outer functions is very similar to changing variables: for example, in a function

  1. What action will we perform first? First, let's calculate the sine, and only then cube it. This means that it is an internal function, but an external one.
    And the original function is their composition: .
  2. Internal: ; external: .
    Examination: .
  3. Internal: ; external: .
    Examination: .
  4. Internal: ; external: .
    Examination: .
  5. Internal: ; external: .
    Examination: .

We change variables and get a function.

Well, now we will extract our chocolate bar and look for the derivative. The procedure is always reversed: first we look for the derivative of the outer function, then we multiply the result by the derivative of the inner function. In relation to the original example, it looks like this:

Another example:

So, let's finally formulate the official rule:

Algorithm for finding the derivative of a complex function:

It seems simple, right?

Let's check with examples:

Solutions:

1) Internal: ;

External: ;

2) Internal: ;

(Just don’t try to cut it by now! Nothing comes out from under the cosine, remember?)

3) Internal: ;

External: ;

It is immediately clear that this is a three-level complex function: after all, this is already a complex function in itself, and we also extract the root from it, that is, we perform the third action (put the chocolate in a wrapper and with a ribbon in the briefcase). But there is no reason to be afraid: we will still “unpack” this function in the same order as usual: from the end.

That is, first we differentiate the root, then the cosine, and only then the expression in brackets. And then we multiply it all.

In such cases, it is convenient to number the actions. That is, let's imagine what we know. In what order will we perform actions to calculate the value of this expression? Let's look at an example:

The later the action is performed, the more “external” the corresponding function will be. The sequence of actions is the same as before:

Here the nesting is generally 4-level. Let's determine the course of action.

1. Radical expression. .

2. Root. .

3. Sine. .

4. Square. .

5. Putting it all together:

DERIVATIVE. BRIEFLY ABOUT THE MAIN THINGS

Derivative of a function- the ratio of the increment of the function to the increment of the argument for an infinitesimal increment of the argument:

Basic derivatives:

Rules of differentiation:

The constant is taken out of the derivative sign:

Derivative of the sum:

Derivative of the product:

Derivative of the quotient:

Derivative of a complex function:

Algorithm for finding the derivative of a complex function:

  1. We define the “internal” function and find its derivative.
  2. We define the “external” function and find its derivative.
  3. We multiply the results of the first and second points.

And the theorem on the derivative of a complex function, the formulation of which is as follows:

Let 1) the function $u=\varphi (x)$ have at some point $x_0$ the derivative $u_(x)"=\varphi"(x_0)$, 2) the function $y=f(u)$ have at the corresponding at the point $u_0=\varphi (x_0)$ the derivative $y_(u)"=f"(u)$. Then the complex function $y=f\left(\varphi (x) \right)$ at the mentioned point will also have a derivative equal to the product of the derivatives of the functions $f(u)$ and $\varphi (x)$:

$$ \left(f(\varphi (x))\right)"=f_(u)"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

or, in shorter notation: $y_(x)"=y_(u)"\cdot u_(x)"$.

In the examples in this section, all functions have the form $y=f(x)$ (i.e., we consider only functions of one variable $x$). Accordingly, in all examples the derivative $y"$ is taken with respect to the variable $x$. To emphasize that the derivative is taken with respect to the variable $x$, $y"_x$ is often written instead of $y"$.

Examples No. 1, No. 2 and No. 3 outline the detailed process for finding the derivative of complex functions. Example No. 4 is intended for a more complete understanding of the derivatives table and it makes sense to familiarize yourself with it.

It is advisable, after studying the material in examples No. 1-3, to move on to independently solving examples No. 5, No. 6 and No. 7. Examples No. 5, No. 6 and No. 7 contain short solution so that the reader can check the correctness of his result.

Example No. 1

Find the derivative of the function $y=e^(\cos x)$.

We need to find the derivative of a complex function $y"$. Since $y=e^(\cos x)$, then $y"=\left(e^(\cos x)\right)"$. To find the derivative $ \left(e^(\cos x)\right)"$ we use formula No. 6 from the table of derivatives. In order to use formula No. 6, we need to take into account that in our case $u=\cos x$. The further solution consists in simply substituting the expression $\cos x$ instead of $u$ into formula No. 6:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)" \tag (1.1)$$

Now we need to find the value of the expression $(\cos x)"$. We turn again to the table of derivatives, choosing formula No. 10 from it. Substituting $u=x$ into formula No. 10, we have: $(\cos x)"=-\ sin x\cdot x"$. Now let's continue equality (1.1), supplementing it with the result found:

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x") \tag (1.2) $$

Since $x"=1$, we continue equality (1.2):

$$ y"=\left(e^(\cos x) \right)"=e^(\cos x)\cdot (\cos x)"= e^(\cos x)\cdot (-\sin x \cdot x")=e^(\cos x)\cdot (-\sin x\cdot 1)=-\sin x\cdot e^(\cos x) \tag (1.3) $$

So, from equality (1.3) we have: $y"=-\sin x\cdot e^(\cos x)$. Naturally, explanations and intermediate equalities are usually skipped, writing down the finding of the derivative in one line, as in the equality ( 1.3). So, the derivative of the complex function has been found, all that remains is to write down the answer.

Answer: $y"=-\sin x\cdot e^(\cos x)$.

Example No. 2

Find the derivative of the function $y=9\cdot \arctg^(12)(4\cdot \ln x)$.

We need to calculate the derivative $y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"$. To begin with, we note that the constant (i.e. the number 9) can be taken out of the derivative sign:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)" \tag (2.1) $$

Now let's turn to the expression $\left(\arctg^(12)(4\cdot \ln x) \right)"$. To make it easier to select the desired formula from the table of derivatives, I will present the expression in question in this form: $\left( \left(\arctg(4\cdot \ln x) \right)^(12)\right)"$. Now it is clear that it is necessary to use formula No. 2, i.e. $\left(u^\alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. Let’s substitute $u=\arctg(4\cdot \ln x)$ and $\alpha=12$ into this formula:

Supplementing equality (2.1) with the result obtained, we have:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))" \tag (2.2) $$

In this situation, a mistake is often made when the solver at the first step chooses the formula $(\arctg \; u)"=\frac(1)(1+u^2)\cdot u"$ instead of the formula $\left(u^\ alpha \right)"=\alpha\cdot u^(\alpha-1)\cdot u"$. The point is that the derivative of the external function must come first. To understand which function will be external to the expression $\arctg^(12)(4\cdot 5^x)$, imagine that you are calculating the value of the expression $\arctg^(12)(4\cdot 5^x)$ at some value $x$. First you will calculate the value of $5^x$, then multiply the result by 4, getting $4\cdot 5^x$. Now we take the arctangent from this result, obtaining $\arctg(4\cdot 5^x)$. Then we raise the resulting number to the twelfth power, getting $\arctg^(12)(4\cdot 5^x)$. The last action, i.e. raising to the power of 12 will be an external function. And it is from this that we must begin to find the derivative, which was done in equality (2.2).

Now we need to find $(\arctg(4\cdot \ln x))"$. We use formula No. 19 of the derivatives table, substituting $u=4\cdot \ln x$ into it:

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)" $$

Let's simplify the resulting expression a little, taking into account $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac(1)(1+(4\cdot \ln x)^2)\cdot (4\cdot \ln x)"=\frac( 1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" $$

Equality (2.2) will now become:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" \tag (2.3) $$

It remains to find $(4\cdot \ln x)"$. Let's take the constant (i.e. 4) outside the derivative sign: $(4\cdot \ln x)"=4\cdot (\ln x)"$. For In order to find $(\ln x)"$ we use formula No. 8, substituting $u=x$ into it: $(\ln x)"=\frac(1)(x)\cdot x"$. Since $x"=1$, then $(\ln x)"=\frac(1)(x)\cdot x"=\frac(1)(x)\cdot 1=\frac(1)(x )$. Substituting the obtained result into formula (2.3), we obtain:

$$ y"=\left(9\cdot \arctg^(12)(4\cdot \ln x) \right)"=9\cdot\left(\arctg^(12)(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^(11)\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot (4\cdot \ln x)" =\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^(11)\cdot \frac(1)(1+16\cdot \ln^2 x)\cdot 4\ cdot \frac(1)(x)=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x)). $

Let me remind you that the derivative of a complex function is most often found in one line, as written in the last equality. Therefore, when preparing standard calculations or control work, it is not at all necessary to describe the solution in such detail.

Answer: $y"=432\cdot \frac(\arctg^(11)(4\cdot \ln x))(x\cdot (1+16\cdot \ln^2 x))$.

Example No. 3

Find $y"$ of the function $y=\sqrt(\sin^3(5\cdot9^x))$.

First, let's slightly transform the function $y$, expressing the radical (root) as a power: $y=\sqrt(\sin^3(5\cdot9^x))=\left(\sin(5\cdot 9^x) \right)^(\frac(3)(7))$. Now let's start finding the derivative. Since $y=\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))$, then:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)" \tag (3.1) $$

Let's use formula No. 2 from the table of derivatives, substituting $u=\sin(5\cdot 9^x)$ and $\alpha=\frac(3)(7)$ into it:

$$ \left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"= \frac(3)(7)\cdot \left( \sin(5\cdot 9^x)\right)^(\frac(3)(7)-1) (\sin(5\cdot 9^x))"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" $$

Let us continue equality (3.1) using the result obtained:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))" \tag (3.2) $$

Now we need to find $(\sin(5\cdot 9^x))"$. For this we use formula No. 9 from the table of derivatives, substituting $u=5\cdot 9^x$ into it:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Having supplemented equality (3.2) with the result obtained, we have:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)" \tag (3.3) $$

It remains to find $(5\cdot 9^x)"$. First, let's take the constant (the number $5$) outside the derivative sign, i.e. $(5\cdot 9^x)"=5\cdot (9^x) "$. To find the derivative $(9^x)"$, apply formula No. 5 of the table of derivatives, substituting $a=9$ and $u=x$ into it: $(9^x)"=9^x\cdot \ ln9\cdot x"$. Since $x"=1$, then $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Now we can continue equality (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^(\frac(3)(7))\right)"=\frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) (\sin(5\cdot 9^x))"=\\ =\frac(3) (7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9^x)\cdot(5\cdot 9 ^x)"= \frac(3)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7)) \cos(5\cdot 9 ^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right) ^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

We can again return from powers to radicals (i.e., roots), writing $\left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))$ in the form $\ frac(1)(\left(\sin(5\cdot 9^x)\right)^(\frac(4)(7)))=\frac(1)(\sqrt(\sin^4(5\ cdot 9^x)))$. Then the derivative will be written in this form:

$$ y"=\frac(15\cdot \ln 9)(7)\cdot \left(\sin(5\cdot 9^x)\right)^(-\frac(4)(7))\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x) (\sqrt(\sin^4(5\cdot 9^x))).

Answer: $y"=\frac(15\cdot \ln 9)(7)\cdot \frac(\cos (5\cdot 9^x)\cdot 9^x)(\sqrt(\sin^4(5\ cdot 9^x)))$.

Example No. 4

Show that formulas No. 3 and No. 4 of the table of derivatives are special case formulas No. 2 of this table.

Formula No. 2 of the table of derivatives contains the derivative of the function $u^\alpha$. Substituting $\alpha=-1$ into formula No. 2, we get:

$$(u^(-1))"=-1\cdot u^(-1-1)\cdot u"=-u^(-2)\cdot u"\tag (4.1)$$

Since $u^(-1)=\frac(1)(u)$ and $u^(-2)=\frac(1)(u^2)$, then equality (4.1) can be rewritten as follows: $ \left(\frac(1)(u) \right)"=-\frac(1)(u^2)\cdot u"$. This is formula No. 3 of the table of derivatives.

Let us turn again to formula No. 2 of the table of derivatives. Let's substitute $\alpha=\frac(1)(2)$ into it:

$$\left(u^(\frac(1)(2))\right)"=\frac(1)(2)\cdot u^(\frac(1)(2)-1)\cdot u" =\frac(1)(2)u^(-\frac(1)(2))\cdot u"\tag (4.2) $$

Since $u^(\frac(1)(2))=\sqrt(u)$ and $u^(-\frac(1)(2))=\frac(1)(u^(\frac( 1)(2)))=\frac(1)(\sqrt(u))$, then equality (4.2) can be rewritten as follows:

$$ (\sqrt(u))"=\frac(1)(2)\cdot \frac(1)(\sqrt(u))\cdot u"=\frac(1)(2\sqrt(u) )\cdot u" $$

The resulting equality $(\sqrt(u))"=\frac(1)(2\sqrt(u))\cdot u"$ is formula No. 4 of the table of derivatives. As you can see, formulas No. 3 and No. 4 of the derivative table are obtained from formula No. 2 by substituting the corresponding $\alpha$ value.

If you follow the definition, then the derivative of a function at a point is the limit of the ratio of the increment of the function Δ y to the argument increment Δ x:

Everything seems to be clear. But try using this formula to calculate, say, the derivative of the function f(x) = x 2 + (2x+ 3) · e x sin x. If you do everything by definition, then after a couple of pages of calculations you will simply fall asleep. Therefore, there are simpler and more effective ways.

To begin with, we note that from the entire variety of functions we can distinguish the so-called elementary functions. These are relatively simple expressions, the derivatives of which have long been calculated and tabulated. Such functions are quite easy to remember - along with their derivatives.

Derivatives of elementary functions

Elementary functions are all those listed below. The derivatives of these functions must be known by heart. Moreover, it is not at all difficult to memorize them - that’s why they are elementary.

So, derivatives of elementary functions:

Name Function Derivative
Constant f(x) = C, CR 0 (yes, zero!)
Power with rational exponent f(x) = x n n · x n − 1
Sinus f(x) = sin x cos x
Cosine f(x) = cos x −sin x(minus sine)
Tangent f(x) = tg x 1/cos 2 x
Cotangent f(x) = ctg x − 1/sin 2 x
Natural logarithm f(x) = log x 1/x
Arbitrary logarithm f(x) = log a x 1/(x ln a)
Exponential function f(x) = e x e x(nothing changed)

If an elementary function is multiplied by an arbitrary constant, then the derivative of the new function is also easily calculated:

(C · f)’ = C · f ’.

In general, constants can be taken out of the sign of the derivative. For example:

(2x 3)’ = 2 · ( x 3)’ = 2 3 x 2 = 6x 2 .

Obviously, elementary functions can be added to each other, multiplied, divided - and much more. This is how new functions will appear, no longer particularly elementary, but also differentiated according to certain rules. These rules are discussed below.

Derivative of sum and difference

Let the functions be given f(x) And g(x), the derivatives of which are known to us. For example, you can take the elementary functions discussed above. Then you can find the derivative of the sum and difference of these functions:

  1. (f + g)’ = f ’ + g
  2. (fg)’ = f ’ − g

So, the derivative of the sum (difference) of two functions is equal to the sum (difference) of the derivatives. There may be more terms. For example, ( f + g + h)’ = f ’ + g ’ + h ’.

Strictly speaking, there is no concept of “subtraction” in algebra. There is a concept of “negative element”. Therefore the difference fg can be rewritten as a sum f+ (−1) g, and then only one formula remains - the derivative of the sum.

f(x) = x 2 + sin x; g(x) = x 4 + 2x 2 − 3.

Function f(x) is the sum of two elementary functions, therefore:

f ’(x) = (x 2 + sin x)’ = (x 2)’ + (sin x)’ = 2x+ cos x;

We reason similarly for the function g(x). Only there are already three terms (from the point of view of algebra):

g ’(x) = (x 4 + 2x 2 − 3)’ = (x 4 + 2x 2 + (−3))’ = (x 4)’ + (2x 2)’ + (−3)’ = 4x 3 + 4x + 0 = 4x · ( x 2 + 1).

Answer:
f ’(x) = 2x+ cos x;
g ’(x) = 4x · ( x 2 + 1).

Derivative of the product

Mathematics is a logical science, so many people believe that if the derivative of a sum is equal to the sum of derivatives, then the derivative of the product strike">equal to the product of derivatives. But screw you! The derivative of a product is calculated using a completely different formula. Namely:

(f · g) ’ = f ’ · g + f · g

The formula is simple, but it is often forgotten. And not only schoolchildren, but also students. The result is incorrectly solved problems.

Task. Find derivatives of functions: f(x) = x 3 cos x; g(x) = (x 2 + 7x− 7) · e x .

Function f(x) is the product of two elementary functions, so everything is simple:

f ’(x) = (x 3 cos x)’ = (x 3)’ cos x + x 3 (cos x)’ = 3x 2 cos x + x 3 (−sin x) = x 2 (3cos xx sin x)

Function g(x) the first multiplier is a little more complicated, but the general scheme does not change. Obviously, the first factor of the function g(x) is a polynomial and its derivative is the derivative of the sum. We have:

g ’(x) = ((x 2 + 7x− 7) · e x)’ = (x 2 + 7x− 7)’ · e x + (x 2 + 7x− 7) ( e x)’ = (2x+ 7) · e x + (x 2 + 7x− 7) · e x = e x· (2 x + 7 + x 2 + 7x −7) = (x 2 + 9x) · e x = x(x+ 9) · e x .

Answer:
f ’(x) = x 2 (3cos xx sin x);
g ’(x) = x(x+ 9) · e x .

Please note that in the last step the derivative is factorized. Formally, this does not need to be done, but most derivatives are not calculated on their own, but to examine the function. This means that further the derivative will be equated to zero, its signs will be determined, and so on. For such a case, it is better to have an expression factorized.

If there are two functions f(x) And g(x), and g(x) ≠ 0 on the set we are interested in, we can define a new function h(x) = f(x)/g(x). For such a function you can also find the derivative:

Not weak, right? Where did the minus come from? Why g 2? And like this! This is one of the most complex formulas - you can’t figure it out without a bottle. Therefore, it is better to study it with specific examples.

Task. Find derivatives of functions:

The numerator and denominator of each fraction contain elementary functions, so all we need is the formula for the derivative of the quotient:


According to tradition, we factorize the numerator - this will greatly simplify the answer:

A complex function is not necessarily a half-kilometer-long formula. For example, it is enough to take the function f(x) = sin x and replace the variable x, say, on x 2 + ln x. It will work out f(x) = sin ( x 2 + ln x) - this is a complex function. It also has a derivative, but it will not be possible to find it using the rules discussed above.

What should I do? In such cases, replacing a variable and formula for the derivative of a complex function helps:

f ’(x) = f ’(t) · t', If x is replaced by t(x).

As a rule, the situation with understanding this formula is even more sad than with the derivative of the quotient. Therefore, it is also better to explain it using specific examples, with a detailed description of each step.

Task. Find derivatives of functions: f(x) = e 2x + 3 ; g(x) = sin ( x 2 + ln x)

Note that if in the function f(x) instead of expression 2 x+ 3 will be easy x, then we get an elementary function f(x) = e x. Therefore, we make a replacement: let 2 x + 3 = t, f(x) = f(t) = e t. We look for the derivative of a complex function using the formula:

f ’(x) = f ’(t) · t ’ = (e t)’ · t ’ = e t · t

And now - attention! We perform the reverse replacement: t = 2x+ 3. We get:

f ’(x) = e t · t ’ = e 2x+ 3 (2 x + 3)’ = e 2x+ 3 2 = 2 e 2x + 3

Now let's look at the function g(x). Obviously it needs to be replaced x 2 + ln x = t. We have:

g ’(x) = g ’(t) · t’ = (sin t)’ · t’ = cos t · t

Reverse replacement: t = x 2 + ln x. Then:

g ’(x) = cos ( x 2 + ln x) · ( x 2 + ln x)’ = cos ( x 2 + ln x) · (2 x + 1/x).

That's all! As can be seen from the last expression, the whole problem has been reduced to calculating the derivative sum.

Answer:
f ’(x) = 2 · e 2x + 3 ;
g ’(x) = (2x + 1/x) cos ( x 2 + ln x).

Very often in my lessons, instead of the term “derivative,” I use the word “prime.” For example, the stroke of the sum is equal to the sum of the strokes. Is that clearer? Well, that's good.

Thus, calculating the derivative comes down to getting rid of these same strokes according to the rules discussed above. As a final example, let's return to the derivative power with a rational exponent:

(x n)’ = n · x n − 1

Few people know that in the role n may well be a fractional number. For example, the root is x 0.5. What if there is something fancy under the root? Again, the result will be a complex function - they like to give such constructions to tests and exams.

Task. Find the derivative of the function:

First, let's rewrite the root as a power with a rational exponent:

f(x) = (x 2 + 8x − 7) 0,5 .

Now we make a replacement: let x 2 + 8x − 7 = t. We find the derivative using the formula:

f ’(x) = f ’(t) · t ’ = (t 0.5)’ · t’ = 0.5 · t−0.5 · t ’.

Let's do the reverse replacement: t = x 2 + 8x− 7. We have:

f ’(x) = 0.5 · ( x 2 + 8x− 7) −0.5 · ( x 2 + 8x− 7)’ = 0.5 (2 x+ 8) ( x 2 + 8x − 7) −0,5 .

Finally, back to the roots: