Карл Шварцшильд: астрономия, артиллерия, черные дыры. Шварцшильда пространство-время Карл Шварцшильд и его формулы

В этой метрике записывается как

d s 2 = (1 − r s r) c 2 d t 2 − d r 2 (1 − r s r) − r 2 (sin 2 ⁡ θ d φ 2 + d θ 2) , {\displaystyle ds^{2}=\left(1-{\frac {r_{s}}{r}}\right)c^{2}dt^{2}-{\frac {dr^{2}}{\left(1-\displaystyle {\frac {r_{s}}{r}}\right)}}-r^{2}\left(\sin ^{2}\theta \,d\varphi ^{2}+d\theta ^{2}\right),}

где r s = 2 G M c 2 {\displaystyle r_{s}={\frac {2GM}{c^{2}}}} - так называемый радиус Шварцшильда , или гравитационный радиус , M {\displaystyle M} - масса, создающая гравитационное поле (в частности, масса чёрной дыры), G {\displaystyle G} - гравитационная постоянная , c {\displaystyle c} - скорость света . При этом область изменения координат − ∞ < t < ∞ , r s < r < ∞ , 0 ≤ θ ≤ π , 0 ≤ φ ≤ 2 π {\displaystyle -\infty с отождествлением точек (t , r , θ , φ = 0) {\displaystyle (t,r,\theta ,\varphi =0)} и (t , r , θ , φ = 2 π) {\displaystyle (t,r,\theta ,\varphi =2\pi)} , как в обычных сферических координатах .

Координата r {\displaystyle r} не является длиной радиус-вектора, а вводится так, чтобы площадь сферы t = c o n s t , r = r 0 {\displaystyle t=\mathrm {const} ,\;r=r_{0}} в данной метрике была равна 4 π r 0 2 {\displaystyle 4\pi r_{0}^{2}} . При этом «расстояние» между двумя событиями с разными r {\displaystyle r} (но одинаковыми остальными координатами) даётся интегралом

∫ r 1 r 2 d r 1 − r s r > r 2 − r 1 , r 2 , r 1 > r s . {\displaystyle \int \limits _{r_{1}}^{r_{2}}{\frac {dr}{\sqrt {1-\displaystyle {\frac {r_{s}}{r}}}}}>r_{2}-r_{1},\qquad r_{2},\;r_{1}>r_{s}.}

При M → 0 {\displaystyle M\to 0} или r → ∞ {\displaystyle r\to \infty } метрика Шварцшильда стремится (покомпонентно) к метрике Минковского в сферических координатах, так что вдали от массивного тела M {\displaystyle M} пространство-время оказывается приблизительно псевдоевклидовым сигнатуры (1 , 3) {\displaystyle (1,3)} . Так как g 00 = 1 − r s r ⩽ 1 {\displaystyle g_{00}=1-{\frac {r_{s}}{r}}\leqslant 1} при r > r s {\displaystyle r>r_{s}} и g 00 {\displaystyle g_{00}} монотонно возрастает с ростом r {\displaystyle r} , то собственное время в точках вблизи тела «течёт медленнее», чем вдалеке от него, то есть происходит гравитационное замедление времени массивными телами.

Дифференциальные характеристики

Для центрально-симметричного гравитационного поля в пустоте (а это и есть случай метрики Шварцшильда) можно положить:

g 00 = e ν , g 11 = − e λ ; λ + ν = 0 , e − λ = e ν = 1 − r s r . {\displaystyle g_{00}=e^{\nu },\quad g_{11}=-e^{\lambda };\quad \lambda +\nu =0,\quad e^{-\lambda }=e^{\nu }=1-{\frac {r_{s}}{r}}.}

Тогда не равные нулю независимые символы Кристоффеля имеют вид

Γ 11 1 = λ r ′ 2 , Γ 10 0 = ν r ′ 2 , Γ 33 2 = − sin ⁡ θ cos ⁡ θ , {\displaystyle \Gamma _{11}^{1}={\frac {\lambda _{r}^{\prime }}{2}},\quad \Gamma _{10}^{0}={\frac {\nu _{r}^{\prime }}{2}},\quad \Gamma _{33}^{2}=-\sin \theta \cos \theta ,} Γ 11 0 = λ t ′ 2 e λ − ν , Γ 22 1 = − r e − λ , Γ 00 1 = ν r ′ 2 e ν − λ , {\displaystyle \Gamma _{11}^{0}={\frac {\lambda _{t}^{\prime }}{2}}e^{\lambda -\nu },\quad \Gamma _{22}^{1}=-re^{-\lambda },\quad \Gamma _{00}^{1}={\frac {\nu _{r}^{\prime }}{2}}e^{\nu -\lambda },} Γ 12 2 = Γ 13 3 = 1 r , Γ 23 3 = ctg θ , Γ 00 0 = ν t ′ 2 , {\displaystyle \Gamma _{12}^{2}=\Gamma _{13}^{3}={\frac {1}{r}},\quad \Gamma _{23}^{3}=\operatorname {ctg} \,\theta ,\quad \Gamma _{00}^{0}={\frac {\nu _{t}^{\prime }}{2}},} Γ 10 1 = λ t ′ 2 , Γ 33 1 = − r sin 2 ⁡ θ e − λ . {\displaystyle \Gamma _{10}^{1}={\frac {\lambda _{t}^{\prime }}{2}},\quad \Gamma _{33}^{1}=-r\sin ^{2}\theta \,e^{-\lambda }.} I 1 = (r s 2 r 3) 2 , I 2 = (r s 2 r 3) 3 . {\displaystyle I_{1}=\left({\frac {r_{s}}{2r^{3}}}\right)^{2},\quad I_{2}=\left({\frac {r_{s}}{2r^{3}}}\right)^{3}.}

Тензор кривизны относится к типу D {\displaystyle \mathbf {D} } по Петрову .

Дефект массы

Если имеется сферически симметричное распределение материи «радиуса» (с точки зрения координат) a {\displaystyle a} , то полная масса тела может быть выражена через его тензор энергии-импульса по формуле

m = 4 π c 2 ∫ 0 a T 0 0 r 2 d r . {\displaystyle m={\frac {4\pi }{c^{2}}}\int \limits _{0}^{a}T_{0}^{0}r^{2}\,dr.}

В частности, для статического распределения вещества T 0 0 = ε {\displaystyle T_{0}^{0}=\varepsilon } , где ε {\displaystyle \varepsilon } - плотность энергии в пространстве. Учитывая, что объём шарового слоя в выбранных нами координатах равен

d V = 4 π r 2 g 11 d r > 4 π r 2 d r , {\displaystyle dV=4\pi r^{2}{\sqrt {g_{11}}}\,dr>4\pi r^{2}\,dr,}

получим, что

m = ∫ 0 a ε c 2 4 π r 2 d r < ∫ V ε c 2 d V . {\displaystyle m=\int \limits _{0}^{a}{\frac {\varepsilon }{c^{2}}}4\pi r^{2}\,dr<\int \limits _{V}{\frac {\varepsilon }{c^{2}}}\,dV.}

Это различие выражает собой гравитационный дефект массы тела . Можно сказать, что часть полной энергии системы содержится в энергии гравитационного поля, хотя локализовать эту энергию в пространстве невозможно.

Особенность в метрике

На первый взгляд, метрика содержит две особенности: при r = 0 {\displaystyle r=0} и при . Действительно, в Шварцшильдовских координатах частице, падающей на тело, потребуется бесконечно большое время t {\displaystyle t} для достижения поверхности r = r s {\displaystyle r=r_{s}} , однако переход, например, к координатам Леметра в сопутствующей системе отсчёта показывает, что с точки зрения падающего наблюдателя никакой особенности пространства-времени на данной поверхности нет, причём как сама поверхность, так и область r ≈ 0 {\displaystyle r\approx 0} будут достигнуты за конечное собственное время .

Реальная особенность метрики Шварцшильда наблюдается лишь при r → 0 {\displaystyle r\to 0} , где стремятся к бесконечности скалярные инварианты тензора кривизны . Эта особенность (сингулярность) не может быть устранена сменой системы координат.

Горизонт событий

Поверхность r = r s {\displaystyle r=r_{s}} называется горизонтом событий . При более удачном выборе координат, например в координатах Леметра или Крускала, можно показать, что никакие сигналы не могут выйти из чёрной дыры через горизонт событий. В этом смысле не удивительно, что поле вне Шварцшильдовской чёрной дыры зависит лишь от одного параметра - полной массы тела.

Координаты Крускала

Можно попытаться ввести координаты, не дающие сингулярности при r = r s {\displaystyle r=r_{s}} . Таких координатных систем известно множество, и самой часто встречающейся из них является система координат Крускала, которая покрывает одной картой всё максимально продолженное многообразие, удовлетворяющее вакуумным уравнениям Эйнштейна (без космологической постоянной). Это большее пространство-время M ~ {\displaystyle {\tilde {\mathcal {M}}}} называется обычно (максимально продолженным) пространством Шварцшильда или (реже) пространством Крускала (Диаграмма Крускала - Секереша). Метрика в координатах Крускала имеет вид

d s 2 = − F (u , v) 2 d u d v + r 2 (u , v) (d θ 2 + sin 2 ⁡ θ d φ 2) , (2) {\displaystyle ds^{2}=-F(u,v)^{2}\,du\,dv+r^{2}(u,v)(d\theta ^{2}+\sin ^{2}\theta \,d\varphi ^{2}),\qquad \qquad (2)}

где F = 4 r s 3 r e − r / r s {\displaystyle F={\frac {4r_{s}^{3}}{r}}e^{-r/r_{s}}} , а функция r (u , v) {\displaystyle r(u,v)} определяется (неявно) уравнением (1 − r / r s) e r / r s = u v {\displaystyle (1-r/r_{s})e^{r/r_{s}}=uv} .

Искусная разработка Шварцшильда имела лишь относительный успех. Ни его метод, ни его интерпретация не были взяты на вооружение. Из его работы не сохранили почти ничего, кроме «голого» результата метрики, с которой связали имя её создателя. Но вопросы интерпретации и прежде всего вопрос «сингулярности Шварцшильда» тем не менее решены не были. Стала выкристаллизовываться точка зрения, что эта сингулярность не имеет значения. К этой точке зрения вели два пути: с одной стороны, теоретический, согласно которому «сингулярность Шварцшильда» непроницаема, и с другой стороны, эмпирический, состоящий в том, что «этого в природе не существует». Эта точка зрения распространилась и стала доминирующей во всей специальной литературе того времени.

Следующий этап связан с интенсивным исследованием вопросов гравитации в начале «золотого века» теории относительности.

См. также: Портал:Физика

Ме́трика Шва́рцшильда - это единственное в силу теоремы Биркхофа сферически симметричное точное решение уравнений Эйнштейна без космологической константы в пустом пространстве. В частности, эта метрика достаточно точно описывает гравитационное поле уединённой невращающейся и незаряженной чёрной дыры и гравитационное поле снаружи от уединённого сферически симметричного массивного тела. Названа в честь Карла Шварцшильда , который первым её обнаружил.

Это решение необходимо является статическим, так что сферические гравитационные волны оказываются невозможными.

Вид метрики

Шварцшильдовские координаты

В так называемых Шварцшильдовских координатах , из которых 3 последних аналогичны сферическим , метрический тензор наиболее физически важной части пространства-времени Шварцшильда с топологией (произведение области двумерного евклидова пространства и двумерной сферы) имеет вид

Координата не является длиной радиус-вектора, а вводится так, чтобы площадь сферы в данной метрике была равна . При этом «расстояние» между двумя событиями с разными (но одинаковыми остальными координатами) даётся интегралом

При или метрика Шварцшильда стремится (покомпонентно) к метрике Минковского в сферических координатах, так что вдали от массивного тела пространство-время оказывается приблизительно псевдоевклидовым сигнатуры . Так как при и монотонно возрастает с ростом , то собственное время в точках вблизи тела «течёт медленнее», чем вдалеке от него, то есть происходит своеобразное гравитационное замедление времени массивными телами.

Дифференциальные характеристики

Обозначим

Тогда не равные нулю независимые символы Кристоффеля имеют вид

Тензор кривизны относится к типу по Петрову .

Дефект массы

Если имеется сферически симметричное распределение материи «радиуса» (с точки зрения координат) , то полная масса тела может быть выражена через его тензор энергии-импульса по формуле

В частности, для статического распределения вещества , где - плотность энергии в пространстве. Учитывая, что объём шарового слоя в выбранных нами координатах равен

получим, что

Это различие выражает собой гравитационный дефект массы тела . Можно сказать, что часть полной энергии системы содержится в энергии гравитационного поля, хотя локализовать эту энергию в пространстве невозможно.

Особенность в метрике

На первый взгляд, метрика содержит две особенности: при и при . Действительно, в Шварцшильдовских координатах частице, падающей на тело, потребуется бесконечно большое время для достижения поверхности , однако переход, например, к координатам Леметра в сопутствующей системе отсчёта показывает, что с точки зрения падающего наблюдателя никакой особенности пространства-времени на данной поверхности нет, причём как сама поверхность, так и область будут достигнуты за конечное собственное время .

Реальная особенность метрики Шварцшильда наблюдается лишь при , где стремятся к бесконечности скалярные инварианты тензора кривизны . Эта особенность (сингулярность) не может быть устранена сменой системы координат.

Горизонт событий

Поверхность называется горизонтом событий . При более удачном выборе координат, например в координатах Леметра или Крускала, можно показать, что никакие сигналы не могут выйти из чёрной дыры через горизонт событий. В этом смысле не удивительно, что поле вне Шварцшильдовской чёрной дыры зависит лишь от одного параметра - полной массы тела.

Координаты Крускала

Можно попытаться ввести координаты, не дающие сингулярности при . Таких координатных систем известно множество, и самой часто встречающейся из них является система координат Крускала, которая покрывает одной картой всё максимально продолженное многообразие, удовлетворяющее вакуумным уравнениям Эйнштейна (без космологической постоянной). Это большее пространство-время называется обычно (максимально продолженным) пространством Шварцшильда или (реже) пространством Крускала. Метрика в координатах Крускала имеет вид

где , а функция определяется (неявно) уравнением .

Рис. 1. Сечение пространства Шварцшильда. Каждой точке на рисунке соответствует сфера площадью . Светоподобные геодезические (то есть мировые линии фотонов) - это прямые под углом к вертикали, иначе говоря - это прямые или

Пространство максимально , то есть его уже нельзя изометрически вложить в большее пространство-время, а область в координатах Шварцшильда () является всего лишь частью (это область - область I на рисунке). Тело, движущееся медленнее света - мировая линия такого тела будет кривой с углом наклона к вертикали меньше , см. кривую на рисунке - может покинуть . При этом оно попадает в область II, где . Покинуть эту область и вернуться к оно, как видно из рисунка, уже не сможет (для этого пришлось бы отклониться более, чем на от вертикали, то есть превысить скорость света). Область II таким образом представляет собой чёрную дыру. Её граница (ломаная, ) соответственно является горизонтом событий.

В есть ещё одна асимптотически плоская область III, в которой также можно ввести Шварцшильдовы координаты. Однако эта область причинно не связана с областью I, что не позволяет получить о ней никакой информации, оставаясь снаружи от горизонта событий. В случае реального коллапса астрономического объекта области IV и III просто не возникают, так как левую часть представленной диаграммы необходимо заменить на непустое пространство-время, заполненное коллапсирующей материей.

Отметим несколько замечательных свойств максимально продолженного Шварцшильдовского пространства :

Орбитальное движение

Основная статья: Проблема Кеплера в общей теории относительности

История получения и интерпретации

Метрика Шварцшильда, выступая как объект значительного теоретического интереса, для специалистов-теоретиков является также неким инструментом, с виду простым, но тем не менее сразу же приводящим к трудным вопросам.

В середине 1915 года Эйнштейн опубликовал предварительные уравнения теории гравитации . Это были ещё не уравнения Эйнштейна, но они уже совпадали с окончательными в вакуумном случае . Сферически-симметричные уравнения для вакуума Шварцшильд проинтегрировал в период с 18 ноября 1915 г. до конца года. 9 января 1916 г. Эйнштейн, к которому Шварцшильд обратился по поводу публикации своей статьи в «Berliner Berichte», написал ему, что «прочитал его работу с огромной страстью» и «был ошеломлён, что истинное решение этой проблемы можно выразить столь легко» - Эйнштейн исходно сомневался, возможно ли вообще получить решение таких сложных уравнений.

Шварцшильд закончил свою работу в марте, получив также сферически-симметричное статическое внутреннее решение для жидкости с постоянной плотностью. В это время на него навалилась болезнь (пузырчатка), которая в мае свела его в могилу. С мая 1916 г. И. Дросте, ученик Г. А. Лоренца, проводя исследования в рамках окончательных эйнштейновских уравнений поля, получил решение той же задачи более простым методом, чем Шварцшильд. Ему же принадлежит первая попытка анализа расходимости решения при стремлении к сфере Шварцшильда.

Вслед за Дросте большинство исследователей стали удовлетворяться различными соображениями, направленными на доказательство непроницаемости сферы Шварцшильда. При этом соображения теоретического характера подкреплялись физическим аргументом, согласно которому «такое в природе не существует», поскольку отсутствуют тела, атомы, звёзды, радиус которых был бы меньше шварцшильдовского радиуса.

Для К. Ланцоша, а также для Д. Гилберта сфера Шварцшильда стала поводом задуматься над понятием «сингулярность», для П. Пенлеве и французской школы она являлась объектом полемики, в которую включился Эйнштейн.

В ходе парижского коллоквиума 1922 г., организованного в связи с приездом Эйнштейна, речь зашла не только об идее, согласно которой радиус Шварцшильда не будет сингулярным, но также и о гипотезе, предвосхищающей то, что сегодня называют гравитационным коллапсом .

Искусная разработка Шварцшильда имела лишь относительный успех. Ни его метод, ни его интерпретация не были взяты на вооружение. Из его работы не сохранили почти ничего, кроме «голого» результата метрики, с которой связали имя её создателя. Но вопросы интерпретации и прежде всего вопрос «сингулярности Шварцшильда» тем не менее решены не были. Cтала выкристаллизовываться точка зрения, что эта сингулярность не имеет значения. К этой точке зрения вели два пути: с одной стороны, теоретический, согласно которому «сингулярность Шварцшильда» непроницаема, и с другой стороны, эмпирический, состоящий в том, что «этого в природе не существует». Эта точка зрения распространилась и стала доминирующей во всей специальной литературе того времени.

Следующий этап связан с интенсивным исследованием вопросов гравитации в начале «золотого века» теории относительности.

Литература

  • K. Schwarzschild Über das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie // Sitzungsberichte der Königlich Preussischen Akademie der Wissenschaften 1. - 1916. - 189-196.
    Рус. пер.: Шварцшильд К. О гравитационном поле точечной массы в эйнштейновской теории // Альберт Эйнштейн и теория гравитации. М.: Мир, 1979. С. 199-207.
  • Ландау, Л. Д. , Лифшиц, Е. М. Теория поля. - Издание 7-е, исправленное. - М .: Наука , 1988. - 512 с. - («Теоретическая физика» , том II). - ISBN 5-02-014420-7
  • Droste J. Het van een enkel centrum in Einstein s theorie der zwaartekracht en de beweging van een stoffelijk punt in dat veld // Versl. gev Vergad. Akad. Amsterdam. - 1916. - D.25. - Biz.163-180.
  • - пространство время вне массивного невращающегося тела в вакууме (тензор Риччи Rik = 0). Элемент длины ds определяется выражением где r,q, f сферические координаты с центром в центре массивного тела, M масса тела. Это решение ур ний Эйнштейна… … Физическая энциклопедия

    Метрика пространства-времени - (см. Метрика, Пространство Время) основной закон, определяющий геометрические свойства четырехмерного пространства времени Минковского, Римана, Шварцшильда и др. Указанная метрика играет фундаментальное значение в формулировке физических законов … Начала современного естествознания

    Метрический тензор или метрика это симметричный тензор ранга 2 на гладком многообразии, посредством которого задаются скалярное произведение векторов в касательном пространстве, длины кривых, углы между кривыми и т. д. В частном случае… … Википедия

    Гравитационный радиус (или радиус Шварцшильда) в Общей теории относительности (ОТО) представляет собой характерный радиус, определённый для любого физического тела, обладающего массой: это радиус сферы, на которой находился бы горизонт событий,… … Википедия

    Это метрика определяющая статическое изотропное гравитационное поле. Частным случаем этой метрики является метрика Шварцшильда, на случай пустого (ничем не заполненного) пространства времени. Содержание 1 Определение … Википедия

    Общая теория относительности Математическая формулировка ОТО Космология Фундаментальные идеи Специальная теория относительности … Википедия

    Решение уравнений Эйнштейна, описывающее внешнее гравитационное поле вращающегося источника с массой ти угловым моментом L. Относится к типу Dпо классификации А. З. Петрова. Наиболее просто записывается в виде метрики Керра Шильда: где К m… … Математическая энциклопедия

Объекты называли «сколлапсировавшие звёзды» или «коллапсары » (от англ. collapsed stars ), а также «застывшие звёзды» (англ. frozen stars ).

Вопрос о реальном существовании чёрных дыр в соответствии с данным выше определением во многом связан с тем, насколько верна теория гравитации, из которой существование таких объектов следует. В современной физике стандартной теорией гравитации, лучше всего подтверждённой экспериментально, является общая теория относительности (ОТО), хотя существование чёрных дыр возможно и в рамках других (не всех) теоретических моделей гравитации (см.: Теории гравитации). Поэтому наблюдательные данные анализируются и интерпретируются, прежде всего, в её контексте, хотя, строго говоря, эта теория не является экспериментально подтверждённой для условий, соответствующих области пространства-времени в непосредственной близости от чёрной дыры. Поэтому утверждения о непосредственных доказательствах существования чёрных дыр, в том числе и в этой статье ниже, строго говоря, следовало бы понимать в смысле подтверждения существования объектов, таких плотных и массивных, а также обладающих некоторыми другими наблюдаемыми свойствами, что их можно интерпретировать как чёрные дыры общей теории относительности.

Кроме того, чёрными дырами часто называют объекты, не строго соответствующие данному выше определению, а лишь приближающиеся по своим свойствам к такой чёрной дыре ОТО, например, коллапсирующие звёзды на поздних стадиях коллапса. В современной астрофизике этому различию не придаётся большого значения, так как наблюдательные проявления «почти сколлапсировавшей» («замороженной») звезды и «настоящей» чёрной дыры практически одинаковы.

История представлений о чёрных дырах

В истории представлений о чёрных дырах выделяют три периода:

  • Начало первого периода связано с опубликованной в 1784 году работой Джона Мичелла , в которой был изложен расчёт массы для недоступного наблюдению объекта.
  • Второй период связан с развитием общей теории относительности , стационарное решение уравнений которой было получено Карлом Шварцшильдом в 1915 году .
  • Публикация в 1975 году работы Стивена Хокинга , в которой он предложил идею об излучении чёрных дыр , начинает третий период. Граница между вторым и третьим периодами довольно условна, поскольку не сразу стали ясны все следствия открытия Хокинга, изучение которых продолжается до сих пор.

«Чёрная звезда» Мичелла

«Чёрная дыра» Мичелла

В ньютоновском поле тяготения для частиц, покоящихся на бесконечности, с учётом закона сохранения энергии:

,
.

Пусть гравитационный радиус - расстояние от тяготеющей массы, на котором скорость частицы становится равной скорости света . Тогда .

Концепция массивного тела, гравитационное притяжение которого настолько велико, что скорость, необходимая для преодоления этого притяжения (вторая космическая скорость), равна или превышает скорость света , впервые была высказана в 1784 году Джоном Мичеллом в письме, которое он послал в Королевское общество . Письмо содержало расчёт, из которого следовало, что для тела с радиусом в 500 солнечных радиусов и с плотностью Солнца вторая космическая скорость на его поверхности будет равна скорости света . Таким образом, свет не сможет покинуть это тело, и оно будет невидимым. Мичелл предположил, что в космосе может существовать множество таких недоступных наблюдению объектов. В 1796 году Лаплас включил обсуждение этой идеи в свой труд «Exposition du Systeme du Monde», однако в последующих изданиях этот раздел был опущен.

После Лапласа, до Шварцшильда

На протяжении XIX века идея тел, невидимых вследствие своей массивности, не вызывала большого интереса у учёных. Это было связано с тем, что в рамках классической физики скорость света не имеет фундаментального значения. Однако в конце XIX - начале XX века было установлено, что сформулированные Дж. Максвеллом законы электродинамики , с одной стороны, выполняются во всех инерциальных системах отсчёта , а с другой стороны, не обладают инвариантностью относительно преобразований Галилея . Это означало, что сложившиеся в физике представления о характере перехода от одной инерциальной системы отсчёта к другой нуждаются в значительной корректировке.

В ходе дальнейшей разработки электродинамики Г. Лоренцем была предложена новая система преобразований пространственно-временных координат (известных сегодня как преобразования Лоренца), относительно которых уравнения Максвелла оставались инвариантными. Развивая идеи Лоренца, А. Пуанкаре предположил, что все прочие физические законы также инвариантны относительно этих преобразований.

Искривление пространства

(Псевдо)римановыми называются пространства, которые в малых масштабах ведут себя «почти» как обычные (псевдо)евклидовы. Так, на небольших участках сферы теорема Пифагора и другие факты евклидовой геометрии выполняются с очень большой точностью. В своё время это обстоятельство и позволило построить евклидову геометрию на основе наблюдений над поверхностью Земли (которая в действительности не является плоской, а близка к сферической). Это же обстоятельство обусловило и выбор именно псевдоримановых (а не каких-либо ещё) пространств в качестве основного объекта рассмотрения в ОТО: свойства небольших участков пространства-времени не должны сильно отличаться от известных из СТО.

Однако в больших масштабах римановы пространства могут сильно отличаться от евклидовых. Одной из основных характеристик такого отличия является понятие кривизны . Суть его состоит в следующем: евклидовы пространства обладают свойством абсолютного параллелизма : вектор X " , получаемый в результате параллельного перенесения вектора X вдоль любого замкнутого пути, совпадает с исходным вектором X . Для римановых пространств это уже не всегда так, что может быть легко показано на следующем примере. Предположим, что наблюдатель встал на пересечении экватора с нулевым меридианом лицом на восток и начал двигаться вдоль экватора. Дойдя до точки с долготой 180°, он изменил направление движения и начал двигаться по меридиану к северу, не меняя направления взгляда (то есть теперь он смотрит вправо по ходу). Когда он таким образом перейдёт через северный полюс и вернётся в исходную точку, то окажется, что он стоит лицом к западу (а не к востоку, как изначально). Иначе говоря, вектор, параллельно перенесённый вдоль маршрута следования наблюдателя, «прокрутился» относительно исходного вектора. Характеристикой величины такого «прокручивания» и является кривизна.

Решения уравнений Эйнштейна для чёрных дыр

Стационарные решения для чёрных дыр в рамках ОТО характеризуются тремя параметрами: массой (M ), моментом импульса (L ) и электрическим зарядом (Q ), которые складываются из соответствующих характеристик упавших в неё тел и излучения. Любая чёрная дыра стремится в отсутствие внешних воздействий стать стационарной, что было доказано усилиями многих физиков-теоретиков, из которых особо следует отметить вклад нобелевского лауреата Субраманьяна Чандрасекара , перу которого принадлежит фундаментальная для этого направления монография «Математическая теория чёрных дыр».

Решения уравнений Эйнштейна для чёрных дыр с соответствующими характеристиками:

Решение для вращающейся чёрной дыры чрезвычайно сложно. Интересно, что сложнейший вид решения был «угадан» Керром из «физических соображений». Первый последовательный вывод решения Керра был впервые проделан С. Чандрасекаром более чем на пятнадцать лет позже. Считается, что наибольшее значение для астрофизики имеет решение Керра, так как заряженные чёрные дыры должны быстро терять заряд, притягивая и поглощая противоположно заряженные ионы и пыль из космического пространства. Существует также теория, связывающая гамма-всплески с процессом взрывной нейтрализации заряженных чёрных дыр путём рождения из вакуума электрон-позитроных пар и падения одной из частиц на дыру с уходом второй на бесконечность (Р. Руффини с сотрудниками).

Решение Шварцшильда

Объекты, размер которых наиболее близок к своему радиусу Шварцшильда, но которые ещё не являются чёрными дырами, - это нейтронные звёзды .

Можно ввести понятие «средней плотности» чёрной дыры, поделив её массу на объём, заключённый под горизонтом событий:

Средняя плотность падает с ростом массы чёрной дыры. Так, если чёрная дыра с массой порядка солнечной обладает плотностью, превышающей ядерную плотность, то сверхмассивная чёрная дыра с массой в 10 9 солнечных масс (существование таких чёрных дыр подозревается в квазарах) обладает средней плотностью порядка 20 кг/м³, что существенно меньше плотности воды!

Таким образом, чёрную дыру можно получить не только сжатием имеющегося объёма вещества, но и экстенсивным путём, накоплением огромного количества материала.

Для точного описания реальных чёрных дыр необходим учёт квантовых поправок, а также наличия момента импульса. Около горизонта событий сильны квантовые эффекты, связанные с материальными полями (электромагнитное, нейтринное и т. д.). Учитывающую это, теорию (то есть ОТО, в которой правая часть уравнений Эйнштейна есть среднее по квантовому состоянию от тензора энергии-импульса) обычно называют «полуклассической гравитацией».

Решение Райсснера - Нордстрёма

Это статичное решение уравнений Эйнштейна для сферически-симметричной чёрной дыры с зарядом, но без вращения.

Метрика чёрной дыры Райсснера - Нордстрёма:

c − скорость света , м/с, t − временная координата (время, измеряемое на бесконечно удалённых часах), в секундах, r − радиальная координата (длина «экватора», делённая на 2π ), в метрах, θ − географическая широта (угол от севера), в радианах, − долгота , в радианах, r s − радиус Шварцшильда (в метрах) тела с массой M , r Q − масштаб длины (в метрах), соответствующий электрическому заряду Q (аналог радиуса Шварцшильда, только не для массы, а для заряда) определяемый как где - это постоянная Кулона .

Параметры чёрной дыры не могут быть произвольными. Максимальный заряд, который может иметь ЧД Райсснера - Нордстрёма равен , где e - заряд электрона. Это частный случай ограничения Керра - Ньюмена для ЧД с нулевым угловым моментом (J = 0 , то есть без вращения).

Однако следует заметить, что в реалистичных ситуациях (см.: Принцип космической цензуры) чёрные дыры не должны быть сколь-либо значительно заряжены.

Решение Керра

Керровская чёрная дыра обладает рядом замечательных свойств. Вокруг горизонта событий существует область, называемая эргосферой , внутри которой невозможно покоиться относительно удалённых наблюдателей, а только вращаться вокруг чёрной дыры в направлении её вращения. Этот эффект называется «увлечением инерциальной системы отсчёта » (англ. frame-dragging ) и наблюдается вокруг любого вращающегося массивного тела, например, вокруг Земли или Солнца, но в гораздо меньшей степени. Однако саму эргосферу ещё можно покинуть, эта область не является захватывающей. Размеры эргосферы зависят от углового момента вращения.

Параметры чёрной дыры не могут быть произвольными (см.: Принцип космической цензуры). При J m a x = M 2 метрика называется предельным решением Керра. Это частный случай ограничения Керра - Ньюмена, для ЧД с нулевым зарядом (Q = 0 ).

Это и другие решения типа «чёрная дыра» порождают удивительную геометрию пространства-времени. Однако требуется анализ устойчивости соответствующей конфигурации, которая может быть нарушена за счёт взаимодействия с квантовыми полями и других эффектов.

Для пространства-времени Керра этот анализ был проведён Субраманьяном Чандрасекаром и было обнаружено, что керровская чёрная дыра - её внешняя область - является устойчивой. Аналогично, как частные случаи, оказались устойчивыми шварцшильдовские и рейсснер-нордстрёмовские дыры. Однако анализ пространства времени Керра - Ньюмена всё ещё не проведён из-за больших математических трудностей.

Решение Керра - Ньюмена

Трёхпараметрическое семейство Керра - Ньюмена - наиболее общее решение, соответствующее конечному состоянию равновесия чёрной дыры. В координатах Бойера - Линдквиста (Boyer - Lindquist) метрика Керра - Ньюмена даётся выражением:

Из этой простой формулы легко вытекает, что горизонт событий находится на радиусе: .

И следовательно параметры чёрной дыры не могут быть произвольными. Электрический заряд и угловой момент не могут быть больше значений, соответствующих исчезновению горизонта событий. Должны выполняться следующие ограничения:

- это ограничение Керра - Ньюмена .

Если эти ограничения нарушатся, горизонт событий исчезнет, и решение вместо чёрной дыры будет описывать так называемую «голую» сингулярность , но такие объекты, согласно распространённым убеждениям, в реальной вселенной существовать не должны. (см.: Принцип космической цензуры , но он пока не доказан).

Метрику Керра - Ньюмена можно аналитически продолжить так, чтобы соединить в чёрной дыре бесконечно много «независимых» пространств. Это могут быть как «другие» Вселенные, так и удалённые части нашей Вселенной. В так полученных пространствах есть замкнутые времениподобные кривые: путешественник может, в принципе, попасть в своё прошлое, то есть встретиться с самим собой. Вокруг горизонта событий вращающейся ЧД также существует область, называемая эргосферой , практически эквивалентная эргосфере из решения Керра; находящийся там стационарный наблюдатель обязан вращаться с положительной угловой скоростью (в сторону вращения ЧД).

Термодинамика и испарение чёрных дыр

Представления о чёрной дыре как об абсолютно поглощающем объекте были скорректированы С. Хокингом в 1975 году . Изучая поведение квантовых полей вблизи чёрной дыры, он предсказал, что чёрная дыра обязательно излучает частицы во внешнее пространство и тем самым теряет массу. Этот эффект называется излучением (испарением) Хокинга . Упрощённо говоря, гравитационное поле поляризует вакуум, в результате чего возможно образование не только виртуальных, но и реальных пар частица -античастица . Одна из частиц, оказавшаяся чуть ниже горизонта событий, падает внутрь чёрной дыры, а другая, оказавшаяся чуть выше горизонта, улетает, унося энергию (то есть часть массы) чёрной дыры. Мощность излучения чёрной дыры равна

Состав излучения зависит от размера чёрной дыры: для больших чёрных дыр это в основном фотоны и нейтрино , а в спектре лёгких чёрных дыр начинают присутствовать и тяжёлые частицы. Спектр хокинговского излучения оказался строго совпадающим с излучением абсолютно чёрного тела , что позволило приписать чёрной дыре температуру

,

где - редуцированная постоянная Планка , c - скорость света, k - постоянная Больцмана , G - гравитационная постоянная , M - масса чёрной дыры.

На этой основе была построена термодинамика чёрных дыр, в том числе введено ключевое понятие энтропии чёрной дыры, которая оказалась пропорциональна площади её горизонта событий:

где A - площадь горизонта событий.

Скорость испарения чёрной дыры тем больше, чем меньше её размеры. Испарением чёрных дыр звёздных (и тем более галактических) масштабов можно пренебречь, однако для первичных и в особенности для квантовых чёрных дыр процессы испарения становятся центральными.

За счёт испарения все чёрные дыры теряют массу и время их жизни оказывается конечным:

При этом интенсивность испарения нарастает лавинообразно, и заключительный этап эволюции носит характер взрыва, например, чёрная дыра массой 1000 тонн испарится за время порядка 84 секунды, выделив энергию, равную взрыву примерно десяти миллионов атомных бомб средней мощности.

В то же время, большие чёрные дыры, температура которых ниже температуры реликтового излучения Вселенной (2,7 К), на современном этапе развития Вселенной могут только расти, так как испускаемое ими излучение имеет меньшую энергию, чем поглощаемое. Данный процесс продлится до тех пор, пока фотонный газ реликтового излучения не остынет в результате расширения Вселенной.

Без квантовой теории гравитации невозможно описать заключительный этап испарения, когда чёрные дыры становятся микроскопическими (квантовыми). Согласно некоторым теориям, после испарения должен оставаться «огарок» - минимальная планковская чёрная дыра.

Теоремы об «отсутствии волос»

Теоремы об «отсутствии волос» у чёрной дыры (англ. No hair theorem ) говорят о том, что у стационарной чёрной дыры внешних характеристик, помимо массы, момента импульса и определённых зарядов (специфических для различных материальных полей), быть не может, и детальная информация о материи будет потеряна (и частично излучена вовне) при коллапсе . Большой вклад в доказательство подобных теорем для различных систем физических полей внесли Брэндон Картер , Вернер Израэль, Роджер Пенроуз , Пётр Крушель (Chruściel), Маркус Хойслер. Сейчас представляется, что данная теорема верна для известных в настоящее время полей, хотя в некоторых экзотических случаях, аналогов которых в природе не обнаружено, она нарушается.

Падение в чёрную дыру

Представим себе, как должно выглядеть падение в шварцшильдовскую чёрную дыру. Тело, свободно падающее под действием сил тяжести, находится в состоянии невесомости. Падающее тело будет испытывать действие приливных сил, растягивающих тело в радиальном направлении и сжимающих - в тангенциальном. Величина этих сил растёт и стремится к бесконечности при . В некоторый момент собственного времени тело пересечёт горизонт событий. С точки зрения наблюдателя, падающего вместе с телом, этот момент ничем не выделен, однако возврата теперь нет. Тело оказывается в горловине (её радиус в точке, где находится тело и есть ), сжимающейся столь быстро, что улететь из неё до момента окончательного схлопывания (это и есть сингулярность) уже нельзя, даже двигаясь со скоростью света.

Рассмотрим теперь процесс падения тела в чёрную дыру с точки зрения удалённого наблюдателя. Пусть, например, тело будет светящимся и, кроме того, будет посылать сигналы назад с определённой частотой. Вначале удалённый наблюдатель будет видеть, что тело, находясь в процессе свободного падения, постепенно разгоняется под действием сил тяжести по направлению к центру. Цвет тела не изменяется, частота детектируемых сигналов практически постоянна. Однако, когда тело начнёт приближаться к горизонту событий, фотоны , идущие от тела, будут испытывать всё большее и большее гравитационное красное смещение. Кроме того, из-за гравитационного поля как свет, так и все физические процессы с точки зрения удалённого наблюдателя будут идти всё медленнее и медленнее. Будет казаться, что тело - в чрезвычайно сплющенном виде - будет замедляться , приближаясь к горизонту событий и, в конце концов, практически остановится. Частота сигнала будет резко падать. Длина волны испускаемого телом света будет стремительно расти, так что свет быстро превратится в радиоволны и далее в низкочастотные электромагнитные колебания, зафиксировать которые уже будет невозможно. Пересечения телом горизонта событий наблюдатель не увидит никогда и в этом смысле падение в чёрную дыру будет длиться бесконечно долго. Есть, однако, момент, начиная с которого повлиять на падающее тело удалённый наблюдатель уже не сможет. Луч света, посланный вслед этому телу, его либо вообще никогда не догонит, либо догонит уже за горизонтом.

Аналогично будет выглядеть для удалённого наблюдателя и процесс гравитационного коллапса . Вначале вещество ринется к центру, но вблизи горизонта событий оно станет резко замедляться, его излучение уйдёт в радиодиапазон, и, в результате, удалённый наблюдатель увидит, что звезда погасла.

Модель на базе теории струн

Группа Самира Матура рассчитала размеры нескольких моделей чёрных дыр по своей методике. Полученные результаты совпадали с размерами «горизонта событий» в традиционной теории.

В связи с этим Матур предположил, что горизонт событий на самом деле представляет собой пенящуюся массу струн, а не жёстко очерченную границу.

Следовательно, согласно этой модели, чёрная дыра на самом деле не уничтожает информацию потому что никакой сингулярности в чёрных дырах нет. Масса струн распределяется по всему объёму до горизонта событий , и информация может храниться в струнах и передаваться исходящим излучением Хокинга (а следовательно выходить за горизонт событий).

Ещё один вариант предложил Гэри Горовиц из Университета Калифорнии в Санта-Барбаре и Хуан Малдасена из принстоновского Института передовых исследований. По мнению этих исследователей, сингулярность в центре чёрной дыры существует, однако информация в неё просто не попадает: материя уходит в сингулярность, а информация - путём квантовой телепортации - отпечатывается на излучении Хокинга.

Чёрные дыры во Вселенной

Со времени теоретического предсказания чёрных дыр оставался открытым вопрос об их существовании, так как наличие решения типа «чёрная дыра» ещё не гарантирует, что существуют механизмы образования подобных объектов во Вселенной . Известны, однако, механизмы, которые могут приводить к тому, что некоторая область пространства-времени будет иметь те же свойства (ту же геометрию), что и соответствующая область у чёрной дыры. Так, например, в результате коллапса звезды может сформироваться пространство-время, показанное на рисунке.

Коллапс звезды. Метрика за пределами затенённой области нам неизвестна (или неинтересна)

Изображённая тёмным цветом область заполнена веществом звезды и метрика её определяется свойствами этого вещества. А вот светло-серая область совпадает с соответствующей областью пространства Шварцшильда, см. рис. выше. Именно о таких ситуациях в астрофизике говорят, как об образовании чёрных дыр, что с формальной точки зрения является некоторой вольностью речи. Снаружи, тем не менее, уже очень скоро этот объект станет практически неотличим от чёрной дыры по всем своим свойствам, поэтому данный термин применим к получающейся конфигурации с очень большой степенью точности.

По современным представлениям, есть четыре сценария образования чёрной дыры:

Style="max-width: 98%; height: auto; width: auto;" src="/pictures/wiki/files/98/b81b094b46e9f548a51e83931dca770b.png" border="0">

Чёрные дыры звёздных масс

Чёрные дыры звёздных масс образуются как конечный этап жизни звезды, после полного выгорания термоядерного топлива и прекращения реакции звезда теоретически должна начать остывать, что приведёт к уменьшению внутреннего давления и сжатию звезды под действием гравитации. Сжатие может остановиться на определённом этапе, а может перейти в стремительный гравитационный коллапс . В зависимости от массы звезды и вращательного момента возможны следующие конечные состояния:

  • Погасшая очень плотная звезда, состоящая в основном, в зависимости от массы, из гелия , углерода , кислорода , неона , магния , кремния или железа (основные элементы перечислены в порядке возрастания массы остатка звезды).
  • Белый карлик , масса которого ограничивается сверху пределом Чандрасекара .
  • Нейтронная звезда , масса которой ограничена пределом Оппенгеймера - Волкова .
  • Чёрная дыра.

По мере увеличения массы остатка звезды происходит движение равновесной конфигурации вниз по изложенной последовательности. Вращательный момент увеличивает предельные массы на каждой ступени, но не качественно, а количественно (максимум в 2-3 раза).

Условия (главным образом, масса), при которых конечным состоянием эволюции звезды является чёрная дыра, изучены недостаточно хорошо, так как для этого необходимо знать поведение и состояния вещества при чрезвычайно высоких плотностях, недоступных экспериментальному изучению. Дополнительные сложности представляет моделирование звёзд на поздних этапах их эволюции из-за сложности возникающего химического состава и резкого уменьшения характерного времени протекания процессов. Достаточно упомянуть, что одни из крупнейших космических катастроф, вспышки сверхновых , возникают именно на этих этапах эволюции звёзд . Различные модели дают нижнюю оценку массы чёрной дыры, получающейся в результате гравитационного коллапса, от 2,5 до 5,6 масс Солнца. Радиус чёрной дыры при этом очень мал - несколько десятков километров.

Впоследствии чёрная дыра может разрастись за счёт поглощения вещества - как правило, это газ соседней звезды в двойных звёздных системах (столкновение чёрной дыры с любым другим астрономическим объектом очень маловероятно из-за её малого диаметра). Процесс падения газа на любой компактный астрофизический объект, в том числе и на чёрную дыру, называется

Сто лет назад действительный член Королевской Академии наук Пруссии Карл Шварцшильд послал своему собрату по Академии Альберту Эйнштейну статью с математическим описанием поля тяготения вне и внутри сферы, заполненной неподвижной жидкостью постоянной плотности. Эта работа стала началом теоретических исследований экзотических объектов, которые мы называем черными дырами.

Озарение Джона Мичелла

История создания современной теории черных дыр и их открытия в космическом пространстве слишком обширна и сложна, чтобы ее можно было без пропусков и упрощений уложить в статью разумного размера. Поэтому я доведу повествование только до первых примеров использования математической модели Шварцшильда в реальной астрофизике, которые имели место почти через четверть века после публикации его замечательной статьи. Однако в противоположном направлении я залезу в историю куда дальше - в конец XVIII столетия. Как раз тогда, в 1784 году, в официальном журнале Лондонского Королевского общества появилась статья с непривычно (во всяком случае, для нас) длинным заголовком: On the Means of Discovering the Distance, Magnitude, &c. of the Fixed Stars, in Consequence of the Diminution of the Velocity of Their Light, in Case Such a Diminution Should be Found to Take Place in any of Them, and Such Other Data Should be Procured from Observations, as Would be Farther Necessary for That Purpose. By the Rev. John Michell, B. D. F. R. S. In a Letter to Henry Cavendish, Esq. F. R. S. and A.S . Ее автор, преподобный Джон Мичелл (John Michell), уже тогда умел вычислять физическую величину, которая сейчас носит имя радиуса Шварцшильда. Хотя эта работа ни в каком смысле не может считаться предшественницей современной концепции черных дыр, исторической полноты ради начать надо именно с нее.

Есть все основания назвать Джона Мичелла (1724–1793) самым блестящим английским ученым XVIII века, окончившим курс Кембриджского университета. Он получил образование в Колледже Королев (Queens" College), где затем преподавал с 1751-го по 1763 год. Женившись, он приличного дохода ради стал искать церковную должность, и с 1767 года до самой смерти был настоятелем (ректором) прихода Св. Михаила в деревне Торнхилл неподалеку от Лидса. Он и там продолжал заниматься наукой - до конца жизни.

Мичелл был замечательным и в высшей степени оригинальным исследователем. Его заслуженно считают отцом-основателем сразу двух наук - сейсмологии и звездной статистики. Мичелл первым обнаружил, что сила отталкивания между одноименными полюсами постоянных магнитов убывает обратно пропорционально квадрату расстояния, и задолго до Шарля Кулона (Charles-Augustin de Coulomb) изобрел и сделал «в железе» крутильные весы, которые хотел, но не успел использовать для гравиметрических экспериментов. Уже после смерти Мичелла его друг Генри Кавендиш (Henry Cavendish), который получил этот прибор и самостоятельно построил его модифицированную версию, выполнил прецизионные промеры силы тяготения, результаты которых уже в начале XIX века позволили вычислить гравитационную постоянную с ошибкой всего лишь порядка одного процента. (Возможно, стоит напомнить, что эта фундаментальная физическая константа, как принято считать, впервые появилась в первом томе знаменитой монографии Симеона Дени Пуассона (Simeon Denis Poisson) Traite de mecanique , а широко использоваться физиками стала только во второй половине XIX века.) К слову, статья Мичелла, о которой идет речь, была отослана именно Кавендишу, зачитавшему ее на нескольких заседаниях Королевского общества в конце 1783-го и в начале 1784 года. Мичелл, и сам активный член Общества с 1760 года, тогда не смог или не захотел приехать в Лондон (почему именно, неизвестно).

К сожалению, Мичелл был неважным коммуникатором. Он часто включал свои самые замечательные результаты в тексты длинных журнальных статей, где описания открытий почти терялись на довольно трюистичном фоне. Из-за этого Мичелл ни при жизни, ни после смерти не получил того признания, которое он, несомненно, заслуживал.

Во вводном письме к Кавендишу, предваряющем основную статью, Мичелл очень четко сформулировал цель нового исследования. Он, как и другие британские ученые того времени, вслед за Ньютоном считал свет потоком мельчайших частиц. Мичелл также вслед за Джозефом Пристли (Joseph Priestley) предположил, что эти частицы, как и обычная материя, подчиняются законам механики и, в частности, должны тормозиться силами тяготения. Мичелл решил, что с помощью этого эффекта в принципе можно измерять расстояния до звезд, звездные величины и звездные массы (стр. 35). Он также выразил надежду, что астрономы смогут плодотворно использовать этот еще никем не применявшийся метод наблюдений (стр. 35–36).

Суть дела в следующем. Считая, что скорость света в момент его испускания всегда одинакова, Мичелл предложил определять скорость света, приходящего на Землю от различных звезд, и с помощью законов небесной механики выжимать из этих измерений сведения о самих звездах. Например, если допустить, что все звезды (или какая-то группа звезд) удалены от Земли примерно на одинаковые расстояния, такие измерения позволят оценивать отношения звездных масс: чем тяжелее звезда, тем сильнее ее тяготение будет замедлять световые корпускулы.

Мичелл весьма подробно объяснил детали своего метода, причем, в духе ньютоновских «Математических начал натуральной философии», не привел ни одной формулы - его изложение строго геометрично. В его статье немало остроумных заключений, тем более что, помимо механики, он привлекает для своих рассуждений оптику и астрономию. Конечно, этот труд был потрачен впустую: скорость света в вакууме постоянна. Поэтому статья Мичелла скорее всего была бы прочно забыта, если бы не один вывод - кстати, сделанный совершенно походя. Развивая свои дедукции, он в конце концов заключает, что очень массивная звезда должна настолько тормозить световые частицы, что они никогда не смогут уйти на бесконечность. Весь ее свет под действием ее же собственного притяжения «будет вынужден вернуться обратно к звезде» (стр. 42). Отсюда следует, что такая звезда окажется невидимой - по крайней мере, с очень больших дистанций. Мичелл отметил, что, согласно его вычислениям, для того, чтобы свет звезды с той же плотностью, что и у Солнца, не мог уйти на бесконечность, ее диаметр должен примерно в 500 раз превышать солнечный. Таким образом, заключает Мичелл, если очень далеко от нас существуют столь же (и даже более) массивные звезды, мы никогда не сможем получить о них никакой информации посредством их света (стр. 50). Интересно, что он использует именно слово information, которое тогда отнюдь не было в таком ходу, как в наши дни.

Легко видеть, что аналогия между черными дырами в современном понимании и мичелловскими экзотическими звездами очень поверхностна и приблизительна. Классическая черная дыра вообще не излучает никакого света (гипотетическое излучение Хокинга - чисто квантовый эффект) и в этом смысле действительно является черной. Световые корпускулы в модели Мичелла, напротив, при любом раскладе покидают поверхность звезды, только не всегда уходят на бесконечность. Поэтому у Мичелла никаких абсолютно черных звезд нет и быть не может, все они видны с тех или иных дистанций. Есть и множество других вполне очевидных различий.

Мичелл задумался и над тем, нельзя ли с Земли как-то обнаружить звезду, если ее свет не достигает нашей планеты. И предложил (я не могу не восхититься его проницательностью!) не просто осуществимое, но и абсолютно современное решение. Предположим, что такая звезда входит в двойную систему, причем свет второй звезды виден в наши телескопы. Тогда мы сможем судить о наличии и даже свойствах невидимой звезды, наблюдая «качания» ее партнера. Хорошо известно, что этот метод давно применяется при поиске экзопланет.

Насколько прав оказался Мичелл в своем вычислении параметров звезды, которую невозможно увидеть с бесконечно большой дистанции? Соответствующую формулу получить очень легко, это задача для школьника. Надо взять общеизвестное математическое выражение для второй космической скорости и подставить на ее место скорость света. В результате получим, что звезда с массой M будет посылать световые корпускулы на конечные расстояния, если ее радиус R не превышает величину , где G - ньютоновская постоянная тяготения, а c - скорость света. Для звезды с массой Солнца это примерно 3 километра. Следовательно, критический радиус любой звезды в мичелловской модели равен трем километрам, умноженным на ее массу в солнечных единицах (иначе говоря, на отношение ее массы к массе Солнца). Конечно, алгебраической формулой для критического радиуса Мичелл владеть не мог хотя бы из-за отсутствия в тогдашнем физическом языке понятия гравитационной постоянной. Мичелл (опять-таки в духе Ньютона) оценил его с помощью геометрических построений, причем весьма остроумных.

Вернемся к примеру Мичелла. Масса звезды солнечной плотности, чей поперечник в 500 раз больше солнечного, составляет 125 миллионов солнечных масс. Критический радиус тела с такой массой, согласно вышеприведенной формуле, равен 375 миллионов километров. Средний радиус Солнца - это примерно 700 тысяч километров, и если его умножить на 500, получим 350 миллионов. Так что Мичелл ошибся совсем немного.

Джон Мичелл доверял своей логике и интуиции и поэтому допускал, что глубины космоса скрывают множество звезд, которые с Земли нельзя разглядеть ни в один телескоп. Через три года после его смерти к такому же выводу пришел великий французский математик, астроном и физик Пьер-Симон Лаплас (Pierre-Simon Laplace), тогда еще не имевший ни графского титула, полученного от Наполеона, ни титула маркиза, которым его удостоили Бурбоны. О светящихся, но невидимых с Земли телах (corps obscurs) он очень кратко упомянул в первом (1796) издании своего популярного трактата Exposition du Systeme du Monde . В XIX веке этот труд выдержал много прижизненных переизданий, которые уже не упоминали эту гипотезу. Это и понятно, поскольку большинство физиков тогда уже считало свет колебаниями эфира. Существование «темных» звезд противоречило волновой концепции света, и Лаплас счел за лучшее о них забыть. В позднейшие времена эту идею считали курьезом, достойным упоминания лишь в трудах по истории науки.

И еще одна немаловажная деталь. И Мичелл, и Лаплас приписывали невидимость на больших дистанциях только самым гигантским и, автоматически, самым массивным звездам (в то время считалось, что плотности всех звезд приблизительно равны плотности Солнца). Ни тот, ни другой не заметили, что в рамках ньютонвской теории света тем же свойством может обладать и небольшое светящееся тело чрезвычайно высокой плотности. Впрочем, о возможности столь компактных космических объектов в то время никто не задумывался.

Карл Шварцшильд и его формулы

25 ноября 1915 года Альберт Эйнштейн представил Академии наук Пруссии письменный доклад, содержащий систему полностью ковариантных уравнений релятивистской теории гравитационного поля, известной также как общая теория относительности (ОТО). Неделей раньше он выступил на заседании Академии с лекцией, в которой продемонстрировал в работе более раннюю версию этих уравнений, которые не обладали полной ковариантностью (ее он представил Академии двумя неделями ранее). Однако уже эти уравнения дали Эйнштейну возможность с помощью метода последовательных приближений правильно вычислить аномальное вращение орбиты Меркурия и предсказать величину углового отклонения звездного света в поле тяготения Солнца.

Это выступление нашло благодарного слушателя в лице коллеги Эйнштейна по Академии Карла Шварцшильда (Karl Schwarzschild, 1873–1916), который служил в действующей армии Германской империи лейтенантом артиллерии и как раз тогда приехал в отпуск. Вернувшись к месту службы, Шварцшильд в декабре нашел точное решение первой версии уравнений Эйнштейна, которое опубликовал через его посредство в «Отчетах о заседаниях» (Sitzungsberichte) Академии. В феврале, уже ознакомившись с окончательной версией уравнений ОТО, Шварцшильд отослал Эйнштейну вторую статью, в которой впервые в явном виде фигурировал гравитационный, он же шварцшильдовский, радиус. 24 февраля Эйнштейн передал в печать и эту работу.

Подобно Джону Мичеллу, Шварцшильд был не только блестящим, но и очень разносторонним ученым. Он оставил глубокий след в наблюдательной астрономии, где стал одним из пионеров оснащения телескопов фотографической аппаратурой и ее использования в целях фотометрии. Ему принадлежат глубокие и оригинальные труды в области электродинамики, звездной астрономии, астрофизики и оптики. Шварцшильд даже успел внести важный вклад в квантовую механику атомных оболочек, построив в своей последней научной работе теорию эффекта Штарка (K. Schwarzschild, 1916. Zur Quantenhypothese). В 1900 году, за пятнадцать лет до создания ОТО, он не только всерьез рассмотрел возможность того, что геометрия Вселенной отличается от евклидовой (ее допускал еще Лобачевский), но и оценил нижние пределы радиуса кривизны пространства для сферической и псевдосферической геометрии космоса. Не достигнув еще и тридцати лет, он стал профессором Геттингенского университета и директором университетской обсерватории. В 1909 году он был избран членом Лондонского астрономического общества и возглавил Потсдамскую астрофизическую обсерваторию, а еще через четыре года сделался членом Прусской академии.

Научную карьеру Шварцшильда оборвала Первая мировая война. Не подлежа по возрасту призыву, он пошел в армию добровольцем и в конце концов оказался на русском фронте в штабе артиллерийской части, где занимался расчетом траекторий снарядов дальнобойных орудий. Там он стал жертвой пемфигуса, очень тяжелого аутоиммунного заболевания кожных покровов, к которому имел наследственную склонность. Эта патология плохо поддается лекарствам и в наше время, а тогда была неизлечимой. В марте 1916 года Шварцшильд был комиссован и вернулся в Потсдам, где скончался 11 мая. Шварцшильд и погибший в Дарданелльской операции английский физик Генри Гвин Мозли (Henry Moseley) стали самыми крупными учеными, чьи жизни унесла Первая мировая война.

Знаменитая пространственно-временная метрика Шварцшильда исторически стала первым точным решением уравнений ОТО. Она описывает статическое гравитационное поле, которое создается в вакууме неподвижным сферически симметричным телом массы M. В стандартной записи в координатах Шварцшильда t, r, θ,φ и при выборе сигнатуры (+, -, -, -) она дается формулой

где . Легко видеть, что этот параметр, который принято называть гравитационным радиусом, или радиусом Шварцшильда, в точности совпадает с критическим радиусом звезды, который появляется при расчете движения световых корпускул в модели Мичелла. Как известно, он играет ключевую роль в современной теории черных дыр (его также называют горизонтом событий дыры).

Метрика Шварцшильда имеет две особые точки - сингулярности на формальном языке. Одна из сингулярностей возникает при r = 0, то есть там же, где обращается в бесконечность ньютоновский гравитационный потенциал. Вторая сингулярность соответствует значению r = r s , когда коэффициент перед dt 2 обращается в нуль, а перед dr 2 - в бесконечность. Это и есть собственно шварцшильдовская сингулярность, над смыслом которой мучилось несколько поколений физиков. Стоит напомнить, что угловые координаты Шварцшильда θ и φ полностью аналогичны полярному и азимутальному углам в обычных сферических координатах, однако величина радиальной координаты r отнюдь не равна длине радиус-вектора. В метрике Шварцшильда длина окружности с центром в начале координат выражается евклидовской формулой 2πr, однако расстояние между двумя точками с радиусами r 1 и r 2 , находящимися на одном радиус-векторе, всегда превышает арифметическую разность r 2 -r 1 . Отсюда сразу видно, что шварцшильдовское пространство неевклидово - отношение длины окружности к длине ее радиуса меньше, чем 2π. Возможно, стоит уточнить, что координата r в шварцшильдовской метрике возникает как одно из возможных отображений (его принято называть стандартным) в трехмерное евклидово пространство метрической координаты ρ, которая фигурирует в описании трехмерного риманова многообразия общего вида со сферической симметрией (см.: Yvonne Choquet-Bruhat, Introduction to General Relativity, Black Holes, and Cosmology , стр. 105–106). Но это уже математические тонкости.

А теперь - самое интересное. Метрика Шварцшильда, как она приведена выше, в обеих его статьях вообще отсутствует. В первой из его публикаций «О гравитационном поле точечной массы, вытекающем из теории Эйнштейна» (K. Schwarzschild, 1916. Uber das Gravitationsfeld eines Massenpunktes nach der Einsteinschen Theorie) представлена совсем другая метрика пространства-времени, соответствующая полю тяготения точечной массы:

Эта формула выглядит в точности как стандартная метрика Шварцшильда (1) с той только разницей, что скорость света в ней принята за единицу и потому в явном виде отсутствует, а радиальная координата обозначена не строчной буквой r, а заглавной R. Однако это сходство чисто внешнее, поскольку координата R отнюдь не тождественна r. Их связывает формула R 3 =r 3 +α 3 , где α - положительная постоянная интегрирования, имеющая размерность длины. Шварцшильд не дает ее конкретную величину и только отмечает, что α зависит от массы точечного центра гравитации. Эта метрика и есть найденное Шварцшильдом точное решение уравнений ОТО для точечной постоянной массы, выраженное в координатах t, R, θ и φ.

Чем эти метрики отличаются друг от друга? В метрике (1) значение радиальной координаты r меняется от нуля до бесконечности, в то время как в метрике (2) значения R лежат в промежутке от α до бесконечности. Как уже говорилось, метрика (1) имеет две особые точки (сингулярности), в то время как метрика (2) - только одну, R = α. При этом значении R метрика теряет смысл, а для меньших значений R она попросту не определена. Неформально отсюда следует, что точечный центр массы окружен сферой, соответствующей значению R = α, и на этой сферической поверхности происходит нечто странное и непонятное. Третье различие между метриками (1) и (2) состоит в том, что параметр α, в отличие от r s не определен какой-либо конкретной формулой, так что в ней нет явного упоминания о гравитационном радиусе.

Карл Шварцшильд получил метрику (2) в результате решения уравнений Эйнштейна в их первой версии, с которой он ознакомился 18 ноября. На ее основе он подтвердил величину вычисленного Эйнштейном аномального поворота орбиты Меркурия. Он также вывел релятивистский аналог третьего закона Кеплера - однако, только для круговых орбит. Конкретно, он показал, что квадрат угловой скорости пробных тел, обращающихся по таким орбитам вокруг центральной точки, дается простой формулой (буквой n Шварцшильд обозначал угловую скорость). Поскольку R не может быть меньше чем α, угловая скорость имеет верхний предел . Напомню, что в ньютоновской механике угловая скорость тел, обращающихся вокруг точечной массы, может быть сколь угодно большой, так что тут зримо видна специфика ОТО. Напомню также, что формула для n0 выведена в предположении, что скорость света равна единице, из-за чего и выходит, что размерность угловой скорости - обратная длина. Чтобы получить угловую скорость с обычной размерностью 1/сек, надо правую часть формулы для n 0 умножить на скорость света c.

Самое интересное Шварцшильд приберег под занавес. В конце статьи, буквально в предпоследней фразе, он отмечает, что если величина точечной массы в начале координат равна массе Солнца, то максимальная частота обращения оказывается примерно 10 тысяч оборотов в секунду. Отсюда сразу следует, что . Так как скорость света с = 3·105 км/сек, параметр α оказывается приблизительно равным 3 километрам, то есть, гравитационному радиусу Солнца! Не появившись в статье Шварцшильда явно, он проник туда с заднего входа и без какого-либо обоснования (Шварцшильд ведь не уточняет, как он получил численную величину предельной частоты). В общем, уже первая статья Шварцшильда прокладывает тонкий мостик к теории черных дыр, хотя обнаружить его не так-то просто. Заметив это, я немало удивился, поскольку принято считать, что гравитационный радиус появляется только во второй статье Шварцшильда.

И последнее. Стандартную форму метрики Шварцшильда (1) можно получить и из неокончательной версии уравнений ОТО. Поскольку речь идет о поле в вакууме, необходимо принять, что тензор-энергии импульса равен нулю. В обеих версиях уравнений ОТО отсюда вытекает равенство нулю тензора Риччи, откуда, в предположении центральной симметрии статического поля, без особых сложностей выводится шварцшильдовская метрика (см. об этом в книгах Л. Д. Ландау и Е. М. Лифшиц, «Теория поля », стр. 381–384; Peter Collier, A Most Incomprehensible Thing: Notes Towards a Very Gentle Introduction to the Mathematics of Relativity , стр. 260–263). Правда, здесь возникают некоторые математические тонкости, которые сто лет назад еще не были видны, но технически такой вывод довольно прост. Однако Шварцшильд, как видим, его не сделал.

Вторая статья Шварцшильда называется «О гравитационном поле сферы, заполненной несжимаемой жидкостью, вычисленном в соответствии с теорией Эйнштейна» (Karl Schwarzschild, 1916. ). В ней (напомню, уже на базе полной системы уравнений ОТО) вычислены две метрики - для внешнего пространства и для пространства внутри сферы. Первая метрика вполне аналогична метрике (2) с той только разницей, что связь между координатами R и r там не столь проста. Метрика внутри сферы много сложнее, и приводить ее я не буду. Для нас важно то, что в конце этой статьи впервые появляется гравитационный радиус, только выраженный в других единицах и никак специально не названный. Как отмечает Шварцшильд, в случае тела с массой Солнца он равен 3 километрам, а для массы в 1 грамм - 1,5·10 -28 сантиметра.

Но эти числа - еще не самое интересное. Шварцшильд также указывает, что радиус сферического тела, измеренный внешним наблюдателем, не может быть меньше этого параметра. Отсюда следует, что точечная масса, о которой шла речь в первой статье Шварцшильда, также представляется извне в виде сферы. Физически это связано с тем, что никакой световой луч не может приблизиться к этой массе ближе, чем на ее гравитационный радиус, а затем вернуться к внешнему наблюдателю. В статье Шварцшильда этих утверждений нет, но они прямо следуют из ее логики. Это второй и последний мостик к концепции черных дыр, который можно найти у самого Шварцшильда.

Сферически симметричными решениями уравнений ОТО после Шварцшильда занимались и чистые математики, и физики, и астрономы. Весной 1916 года голландец Иоханнес Дросте, который заканчивал в Лейденском университете докторскую диссертацию под руководством Х. А. Лоренца, представил шефу для публикации работу с более простым вычислением метрики пространства-времени для точечной массы по сравнению с шварцшильдовским (J. Droste, 1917. The Field of a Single Center in Einstein"s Theory of Gravitation, and the Motion of a Particle in that Field). При этом в качестве основы он воспользовался еще более ранней версией уравнений гравитации, найденной Эйнштейном в 1913 году (так называемая теория «Проекта», Entwurf theory). Именно Дросте первым опубликовал ту форму метрики, которая стала считаться стандартной (несколько позже это сделали Давид Гильберт (David Hilbert) и Герман Вейль (Hermann Weyl)). Он также получил важные результаты относительно движения частиц в сферически симметричных полях тяготения.

В ходе последующей «шлифовки» решения Шварцшильда был также обнаружен совершенно различный характер сингулярностей, возникающих в стандартной форме метрики при r = r s (как выяснилось, ее можно устранить заменой координат) и сингулярностью при r = 0, которая оказалась неустранимой. Все это очень интересно, но полностью выпадает за рамки моей статьи. Поэтому мне остается выполнить обещание, заявленное в ее начале - проследить исторический путь к конструированию первых астрофизических моделей на ее основе.

Странная физика белых карликов

В первые годы после появления статей Шварцшильда и других публикаций на ту же тему практически никто не верил, что в природе могут существовать объекты, создающие действительно сильную неевклидовость окружающего пространства. Отсюда следовало, что сфера Шварцшильда, как ее стали называть, скорее всего не имеет физического смысла и никогда не станет объектом реальных наблюдений. Однако постепенно ситуация стала меняться.

Вероятно, будет правильным связать начало этой эволюции с опубликованной в 1926 году работой английского физика Ральфа Фаулера (Ralph Fowler) «О плотной материи» (R. H. Fowler, 1926. On Dense Matter). Фаулер поставил своей целью объяснить природу «таких звезд, как спутник Сириуса» (стр. 114), иначе говоря, белых карликов. Эти горячие звезды с очень малой болометрической светимостью были известны с середины XIX века, а к тому времени уже получили (в 1922 году) и свое нынешнее название. Они осознавались в качестве серьезной проблемы для астрофизики из-за своих аномально малых размеров и столь же аномально высокой плотности, на несколько порядков превышающей плотность Солнца.

Фаулер предположил, что такие звезды сопротивляются гравитационному сжатию за счет давления холодного нерелятивистского вырожденного электронного газа, возникающего при обобществлении атомных электронов при очень высокой плотности звездной материи. Такой газ, в соответствии с принципом Паули, занимает в импульсном пространстве все допустимые значения от нуля до определенной верхней границы. Давление этого газа не зависит от температуры и пропорционально его плотности в степени 5/3. Отсюда следует, что масса белого карлика в принципе может быть сколь угодно большой, поскольку давление вырожденного газа всегда сможет сопротивляться гравитационному сжатию звезды.

На первый взгляд модель Фаулера может показаться внутренне противоречивой. Белые карлики представляют собой медленно остывающие, но все еще достаточно горячие останки не слишком массивных звезд главной последовательности, полностью исчерпавших свое термоядерное топливо. Температуры их фотосфер варьируют от нескольких тысяч до нескольких десятков тысяч кельвинов, а центральные области, естественно, нагреты куда больше. Возникает вопрос, откуда же внутри этих звезд мог взяться холодный вырожденный электронный газ. Однако с физической точки зрения такой газ может считаться холодным, если максимальная энергия электронов заметно превышает тепловую энергию оголенных атомных ядер внутризвездной плазмы. Расчеты показывают, что такое положение дел сохраняется как минимум до температур порядка десятков миллионов кельвинов.

Теперь вернемся на историческую канву. Очень скоро модель Фаулера подверглась радикальной коррекции, основанной на использовании релятивистской механики для описания электронного газа. Пионером в этом деле оказался замечательный советский физик-теоретик Яков Ильич Френкель. Не могу отказать себе в удовольствии процитировать соответствующее место из его автобиографии, где все сказано с изумительной четкостью:

«В том же 1928 году я пытался приложить электронную теорию к проблеме внутреннего строения звезд, развивая теорию Ферми на случай электронного газа с релятивистскими энергиями. Таким путем мне удалось прийти к выводу о том, что масса стабильной звезды не может превосходить определенного максимального значения, ненамного превосходящего массу Солнца».

Френкель имел в виду свою статью Anwendung der Pauli-Fermischen Elektronengastheorie auf das Problem der Kohasionskrafte («Применение теории электронного газа Паули-Ферми к вопросу о силах сцепления»), которая в мае 1928 года появилась в журнале Zeitschrift fur Physik (есть русский перевод: Я. И. Френкель, Собрание избранных трудов, т. 2). Под стабильными звездами он понимал звезды с чрезвычайно высокой плотностью вещества, чье внутреннее давление создается холодным вырожденным электронным газом. Это и есть белые карлики, хотя сам Френкель таким названием не пользовался. При этом он не только рассмотрел поведение как нерелятивистского, так и релятивистского электронного газа, но также показал, что релятивистские эффекты начинают работать, когда масса звезды достигает приблизительно массы Солнца, а плотность ее вещества переходит за 10 9 кг/м 3 , что в целом вполне соответствует современным представлениям о свойствах белых карликов. Однако Френкель все же не довел свой анализ до вычисления предельной массы этих звезд, что вскоре сделали другие ученые. К сожалению, его замечательные результаты не были замечены в астрономическом сообществе того времени и потому не оказали влияния на развитие астрофизики.

Через год после публикации статьи Френкеля появились работы, в которых выход за рамки теории Фаулера был осуществлен уже непосредственно в контексте объяснения свойств белых карликов. В 1929 году астрофизик из Тартусского университета Вильгельм Андерсон (Wilhelm Anderson) показал, что, если масса белого карлика достигает примерно массы Солнца, электроны у верхней границы энергий приобретают субсветовые скорости и потому для вычисления уравнения состояния электронного газа надо использовать релятивистскую механику. В предельном случае ультрарелятивистских электронов давление оказывается пропорциональным плотности в степени 4/3. Одновременно с Андерсоном такое же уравнение состояния, только с другим численным коэффициентом, вывел лектор Лидского университета Эдмунд Стоунер (Edmund Stoner). На основе этих результатов (см. W. Anderson, 1929. Gewohnliche Materie und Strahlende Energie als Verschiedene "Phasen" eines und Desselben Grundstoffes ; E. C. Stoner, 1929. The Limiting Density in White Dwarf Stars) они оба пришли к заключению о невозможности стабильного существования звездных ядер, заполненных вырожденным электронным газом, если их массы по порядку величины приближаются к массе Солнца. В позднейших публикациях они привели приближенные оценки максимальной массы таких ядер (0,69 M s у Андерсона и 1,12 M s у Стоунера).

Андерсон и Стоунер в своих выкладках опирались на ряд упрощающих и потому нереалистичных допущений - например, оба они предполагали, что плотность вещества белого карлика постоянна во всем его объеме. Более адекватный анализ проблемы верхней границы массы белых карликов в 1930 году выполнил 19-летний выпускник Мадрасского университета и будущий Нобелевский лауреат Субраманьян Чандрасекар (Subrahmanyan Chandrasekhar), который использовал уравнение гидростатического равновесия (S. Chandrasekar, 1931. The Maximum Mass of Ideal White Dwarfs). Он вывел формулу для максимальной массы идеального белого карлика, которая сейчас носит его имя (предел Чандрасекара). Правда, в явном виде, как ее в различных версиях можно найти в учебниках и справочниках, она в этой статье не приводится - возможно, в силу краткости текста. Подставив численные значения фигурирующих в ней физических величин, Чандрасекар заключил, что масса белого карлика не может превышать 0,91 M s . Модель Чандрасекара (которая впоследствии не раз уточнялась) была в теоретическом контексте своего времени совершенно правильной, однако вычисленное им значение предельной массы оказалось слишком низким, поскольку он использовал завышенную величину средней массы звездного вещества, приходящейся на один электрон. Сейчас принято считать, что этот предел с точностью до первого десятичного знака равен 1,4 M s ; масса наилегчайшего белого карлика, открытого в нашей Галактике, приблизительно равна 0,2 M s . В 1934 году Чандрасекар построил теорию белых карликов произвольной массы, которую использовал для детального обсчета структур почти двух десятков таких звезд. Моделирование белых карликов различных типов сыграло немалую роль и в развитии астрофизики во второй половине прошлого века.

Нейтронные ядра или нейтронные звезды?

Белые карлики были сначала открыты в наблюдениях, а затем смоделированы теоретиками. Все получилось ровно наоборот с еще более экзотическими компактными объектами Большого Космоса, нейтронными звездами.

К концу первой четверти ХХ столетия астрономы научились с приличной точностью определять межгалактические расстояния в окрестности Млечного Пути. После этого стало ясно, что некоторые из новых звезд излучают в тысячи раз больше энергии, нежели остальные. В 1925 году шведский астроном Кнут Эмиль Лундмарк (Knut Emil Lundmark) предложил выделить их в особую группу новых звезд высшего класса, но это наименование как-то не привилось. В начале 30-х профессор физики Калтеха Фриц Цвикки (Fritz Zwicky) в лекциях для аспирантов стал называть экстремально яркие вспышки сверх-новыми. Этот термин привился, хотя со временем лишился дефиса.

В декабре 1933 году Цвикки и астроном из обсерватории Маунт Вильсон Вальтер Бааде (Walter Baade) (оба - эмигранты из Европы) представили на сессии Американского физического общества доклад «О сверх-новых», который вскоре появился в печати (W. A. Baade and F. Zwicky, 1934 On Super-Novae). Доклад был замечен за пределами физического сообщества и отмечен в американских СМИ. Бааде и Цвикки подсчитали, что в течение месяца типичная сверхновая посылает в пространство столько же света, сколько излучает наше Солнце за 10 миллионов лет. Они пришли к заключению, что такое возможно лишь при частичном превращении массы звезды в лучевую энергию в соответствии с формулой Эйнштейна. Поэтому они предположили, что взрыв сверхновой представляет собой трансформацию обычной звезды в звезду нового типа, состоящую в основном из нейтронов. Нейтронная звезда должна обладать очень малым радиусом и, следовательно, состоять из вещества экстремально высокой плотности, на много порядков превосходящей плотность белых карликов. Эта гипотеза была сформулирована в заметке Cosmic Rays from Super-Novae , опубликованной в том же выпуске Proceedings of the National Academy of Sciences сразу вслед за первым сообщением. В той же работе они выдвинули поистине пророческую гипотезу: взрывы сверхновых звезд могут быть источником космических лучей.

Большинство специалистов сочло предположение о рождении нейтронных звезд на финальной стадии взрывов сверхновых, мягко говоря, плохо обоснованным - тем более, что Цвикки и Бааде не могли предложить физический механизм рождения столь странных космических объектов. Поначалу его не принял даже Чандрасекар, хотя в 1939 году, выступая на конференции в Париже, он все же допустил, что эта гипотеза имеет право на существование. Окончательно ее справедливость стала ясной только после открытия радиопульсаров в 1967 году. Стоит отметить, что термин «пульсар» в конце того же года изобрел не ученый, а журналист, научный обозреватель газеты Daily Telegraph Энтони Михаэлис (Anthony Michaelis).

Бааде и Цвикки не первыми допустили существование космических объектов, состоящих из сверхплотной материи. Ранее с аналогичной идеей выступил Лев Давидович Ландау, который предположил, что состоящие из такой материи звездные ядра могут служить источником гравитационной энергии, которую звезды расходуют на свое излучение. Его статья была написана в начале 1931 года, то есть еще до открытия нейтрона заместителем директора Кавендишской лаборатории Джеймсом Чедвиком (James Chadwick) в 1932 году (естественно, эта частица в статье Ландау и не упоминается), однако опубликована годом позже (L. D. Landau, 1932. On the theory of stars). В первой части статьи Ландау не только самостоятельно переоткрыл формулу для предела Чандрасекара (о которой он, можно не сомневаться, не успел узнать), но и вычислил для него вполне приемлемое значение 1,5 M s . Ландау оказался ближе к истине, поскольку использовал вполне реалистичную оценку массы на один электрон, посчитав ее равной удвоенной массе протона (Чандрасекар в своей первой статье счел ее равной двум с половиной протонным массам).

Во второй части Ландау в каком-то смысле дал волю фантазии. Он сделал весьма экзотическое допущение, согласно которому обычные звезды обладают компактными сверхплотными сердцевинами, фактически гигантскими атомными ядрами, которые и служат их энергетическими источниками. Поскольку обосновать эту идею в контексте тогдашних (впрочем, как и сегодняшних) фундаментальных физических теорий было невозможно, Ландау даже допустил, что в таких звездных недрах может нарушаться закон сохранения энергии. При этом он ссылался на авторитет Нильса Бора, который пытался в том же ключе объяснить загадочный разброс энергий и импульсов бета-распадных электронов (как известно, Вольфганг Паули «спас» закон сохранения энергии с помощью гипотетической нейтральной частицы, позднее названной нейтрино).

В общем, «нейтронизация» звездного вещества как причина феноменальной мощности сверхновых - целиком и полностью идея Бааде и Цвикки. Правда, Бааде больше к ней не возвращался и, скорее всего, не слишком принимал всерьез. А вот Цвикки развернул целую программу поиска сверхновых с помощью 18-дюймового телескопа с фотокамерой, приобретенного за счет фонда Рокфеллера. Уже к осени 1937 года, всего за год наблюдений, он обнаружил три сверхновых. Эта программа была свернута после нападения японцев на Перл-Харбор.

В ретроспективе понятно, что гипотеза Бааде и Цвикки указывала на тот самый переход от вырожденного электронного газа к веществу иной природы, который логически вытекал из работ Френкеля, Андерсона, Стоунера и Чандрасекара. Неудивительно, что она весьма заинтересовала Ландау, который через несколько лет вернулся к своей модели и опубликовал ее модифицированную версию в журнале Nature (L. D. Landau, 1938. Origin of Stellar Energy). В этой заметке Ландау уже прямо писал не вообще о ядерной, а именно о нейтронной материи, возникшей при слиянии электронов с атомными ядрами при сверхвысоких давлениях внутри звездных недр (интересно, что при этом он сослался не на Бааде и Цвикки, а на профессора Лейпцигского университета Фридриха Хунда (Friedrich Hund), который в середине 1930-х годов весьма активно занимался астрофизикой). Ландау утверждал, что нормальные звезды могут обладать стабильными нейтронными ядрами с массой свыше одной тысячной (в других предположениях, одной двадцатой) массы Солнца, сжатие которых обеспечивает энергию, идущую на их излучение.

Однако в данном случае Ландау изменила его прославленная интуиция. Его гипотеза в том же году была опровергнута Робертом Оппенгеймером (Julius Robert Oppenheimer) и его постдоком Робертом Сербером (Robert Serber) (J. R. Oppenheimer and R. Serber, 1938. On the Stability of Stellar Neutron Cores). Они показали, что адекватный учет ядерных сил практически исключает возможность существования нейтронных ядер у звезд, чьи массы сравнимы с массой Солнца. Оппенгеймер и Сербер также пришли к совершенно верному, как показало время, заключению, что никакое нейтронное ядро не может возникнуть до того, как звезда полностью исчерпает все источники ядерной энергии (и, таким образом, хотя в статье это прямо и не говорится, сойдет с главной последовательности). В их коротком сообщении также отмечено (правда, без доказательств), что масса такого ядра во всяком случае не может быть меньше одной десятой массы Солнца. Эта оценка была получена на основе одних только энергетических соображений и оказалась совершенно правильной. По современным представлениям, при массе ядра менее 0,1 M s нейтроны стали бы превращаться в протоны посредством бета-распада. Новорожденные протоны сливались бы с нейтронами, образуя сильно нейтроноизбыточные и потому крайне нестабильные атомные ядра. В результате, если бы нейтронная звезда каким-либо образом похудела настолько, что ее масса упала ниже 0,1 M s , она исчезла бы в ядерном взрыве. За эту информацию я очень благодарен доктору ф.-м. наук А. Ю. Потехину.

Ландау вскоре после публикации статьи в Nature был арестован и год провел в заключении. К своей модели нейтронного ядра как источника звездной энергии он больше никогда не возвращался - скорее всего потому, что ко времени его освобождения в апреле 1939 года было уже ясно, что звезды главной последовательности питаются энергией термоядерного синтеза. Возможно, будет нелишним напомнить, что Сербер в военные годы стал одним из главных участников возглавлявшегося Оппенгеймером Манхеттенского проекта, и это именно он придумал имена для атомных бомб «Малыш» (Little Boy) и «Толстяк» (Fat Man), cброшенных 6 и 9 августа 1945 года на Хиросиму и Нагасаки.

Возврат к Шварцшильду: первые шаги

Поскольку гипотеза Цвикки и Бааде все же никуда не делась, возник естественный вопрос: существует ли верхний предел массы для тех сверхновых, которые предположительно оставляют после себя нейтронные звезды (напомню, что Ландау говорил не о верхнем, а о нижнем пределе массы нейтронных ядер обычных звезд)? Иными словами, существует ли верхний предел массы гипотетических нейтронных звезд подобно тому, как он существует для белых карликов? При этом было понятно, что нейтронные звезды, если они действительно рождаются в космическом пространстве, по плотности неизмеримо превосходят белые карлики. В 1937 году Георгий Гамов оценил максимальную плотность нейтронного вещества в 10 17 кг/м 3 (G. Gamow, 1937. Structure of Atomic Nuclei and Nuclear Transformations; G. Gamov, 1939. Physical Possibilities of Stellar Evolution), что на 9 порядков больше плотности массы типичного белого карлика. Его результат вполне выдержал проверку наблюдениями: измеренные плотности нейтронных звезд варьируют в диапазоне (4–6)·10 17 кг/м 3 . В той же монографии Гамов, вспомнив опубликованную в 1932 году гипотезу Ландау, отметил, что нейтронные ядра могли бы обеспечить активную жизнь звезды «на очень долгое время», хотя в то время такая точка зрения была уже анахронизмом.

В 1939 году эту проблему попытались разрешить Роберт Оппенгеймер и его канадский аспирант Джордж Майкл Волков (George Michael Volkoff), москвич по рождению и в прежней жизни Георгий Михайлович. Их совместная статья (J. R. Oppenheimer and G. M. Volkoff, 1939. On Massive Neutron Cores) заслуженно считается одним из самых ярких достижений теоретической астрофизики первой половины двадцатого века. И это несмотря на то, что полученная в ней оценка верхнего предела массы нейтронных остатков массивных звезд оказалась сильно заниженной.

Можно было бы ожидать, что Оппенгеймер, ставя эту задачу, хотел прояснить применимость гипотезы Бааде и Цвикки. Однако если у него и было такое намерение, он сделал все, что его скрыть. В статье, о которой идет речь, вообще нет ссылок ни на одну публикацию этих исследователей. Что и неудивительно. Оппенгеймер тогда был профессором физики Калифорнийского университета в Беркли, однако регулярно наезжал в Калтех, где работал Цвикки. Не секрет, что Оппенгеймер на дух не переносил Цвикки как человека и не доверял ему как ученому (и такое отношение в обоих планах разделяли многие современники). Так что Оппенгеймер и Волков ограничились нейтральной фразой: «Была предположена возможность того, что в центральных областях достаточно массивных звезд, истощивших термоядерные источники энергии, формируются сильно сжатые нейтронные ядра» (стр. 475). В качестве одного из источников этой гипотезы они назвали недавнюю публикацию Ландау в Nature, в то время как Бааде и Цвикки проходят всего лишь по разряду «и другие» (Ibid). Они также сослались на вышеупомянутое сообщение Оппенгеймера и Сербера, точнее, на их оценку минимальной массы нейтронного ядра в 0,1 M s .

А дальше начинается самое интересное. Оппенгеймер и Волков работали с моделью вырожденного холодного нейтронного ферми-газа со сферически симметричным распределением частиц. В этом плане их подход вполне аналогичен подходу Андерсона, Стоунера, Чандрасекара и Ландау, которые делали вычисления на базе модели вырожденного релятивистского электронного газа. Оппенгеймер и Волков специально подчеркнули, что если непосредственно взять из статьи Ландау 1932 года формулу для максимальной массы звезды, состоящей из такого газа (напомню, что это точный аналог формулы Чандрасекара) и просто заменить там электроны нейтронами, верхний предел массы звезды составит примерно 6 солнечных масс, что и в самом деле вычисляется совершенно элементарно. Однако дальше соавторы указывают, что такой подход был бы ошибочен, причем по двум причинам. Для получения правильного результата необходимо учесть неньютоновский характер тяготения гипотетического нейтронного ядра с его гигантской гравитацией. Кроме того, нельзя заранее предполагать, что нейтронный газ будет релятивистски вырожденным во всем объеме звезды. «Настоящее исследование ставит своей целью выяснить, какие отличия в результаты вычислений внесет использование как общей теории относительности вместо ньютоновской теории гравитации, так и более точного уравнения состояния» (стр. 575).

Для решения этой задачи Оппенгеймер и Волков провели расчеты на основе общего статического решения полевых уравнений Эйнштейна для сферически симметричного распределения вещества и, в частности, решения Шварцшильда, которое описывает метрику пустого пространства, окружающего это вещество. Они также предположили, что вещество состоит из квантовых частиц, подчиняющихся статистике Ферми - Дирака, чьей тепловой энергией и негравитационными взаимодействиями можно пренебречь. Приравняв массу частиц этого холодного ферми-газа массе нейтронов и проведя приближенное численное интегрирование полученных уравнений, Оппенгеймер и Волков пришли к выводу, что массы нейтронных ядер звезд, которые полностью использовали свои термоядерные энергетические ресурсы, не могут превышать 70% солнечной массы.

Давно известно, что эта первая оценка максимальной массы нейтронных ядер оказалась сильно заниженной. Позднейшее моделирование показало, что массы нейтронных звезд должны лежать в интервале (1,5–3)·M s ; массы реально наблюдавшихся нейтронных звезд составляют от полутора до двух солнечных масс. Причина этой ошибки также понятна. В конце 1930-х годов еще не существовало развернутой теории ядерных сил, которая позволила бы написать хотя бы приближенные уравнения состояния материи при сверхвысоких плотностях и давлениях. Сейчас известно, что в этой области действуют мощные ядерные силы отталкивания, которые и увеличивают нижний предел масс нейтронных звезд по сравнению с моделью Оппенгеймера-Волкова.

Сравнение оценки Оппенгеймера-Волкова с пределом Чандраксекара очевидным образом создавало малоприятную проблему, которую они сами прекрасно поняли и прокомментировали. Если давление вырожденного релятивистского электронного газа способно сопротивляться гравитационному коллапсу звезд с массой вплоть до почти что полутора масс Солнца, то совершенно непонятно, как могла бы возникнуть нейтронная звезда, коль скоро ее масса не может превышать 0,7 M s . Оппенгеймер и Волков обошли эту трудность, предположив, что нейтронные ядра могут быть сколь угодно массивными, если разность между плотностью материи и ее утроенным давлением принимает большие отрицательные значения (стр. 381). Сейчас мы знаем, что это допущение не оправдалось, и верхний предел масс нейтронных звезд все же существует. Оппенгеймер и Волков также высказали почти что уверенность, что учет ядерных сил взаимного отталкивания не позволит существенно повысить вычисленный ими верхний предел масс нейтронных ядер - и в этом они тоже оказались неправы.

Разумеется, все это ни в коем случае не уменьшает значения работы Оппенгеймера и Волкова. Они действовали на совершенно неизведанной территории, причем практически в одиночку, если не считать неформального содействия профессора Калтеха Ричарда Толмена (Richard Tolman). Демонстрация, пусть и на упрощенной модели, существования верхнего предела масс нейтронных звезд была результатом первостепенной важности. Этот результат позволял предположить, что самые массивные потомки сверхновых не становятся нейтронными звездами, а переходят в какое-то другое состояние.

На этом стоит остановиться поподробней. Оппенгеймер, Волков и Толмен получили уравнение для радиального градиента давления вещества внутри сжимающейся звезды. Образно выражаясь, оно показывает, каким образом звезда сопротивляется сжатию, увеличивая внутреннее давление. Однако в ОТО, в отличие от ньютоновской механики, давление само служит фактором искривления пространства-времени и тем самым источником поля тяготения. Поэтому гравитация внутри звезды может нарастать настолько быстро, что коллапс делается необратимым. Это следствие уравнения Толмена - Оппенгеймера - Волкова сейчас кажется очень прозрачным, однако авторы его не проследили.

В том же 1939 году Оппенгеймер и еще один его аспирант Хартланд Снайдер (Hartland Snyder) вплотную приблизились к описанию такого финала (J. R. Oppenheimer and H. Snyder, 1939. On Continued Gravitational Contraction). Они рассмотрели процесс гравитационного сжатия строго сферического невращающегося пылевого облака с постоянной плотностью - опять-таки, с явным использованием шварцшильдовской метрики. Конечно, это была максимально упрощенная модель космического вещества. Частички пылевидной материи по определению взаимодействуют друг с другом исключительно посредством взаимного притяжения (следовательно, давление в таком облаке равно нулю) и потому движутся по геодезическим мировым линиям; кроме того, такая система не имеет термодинамических характеристик. Однако более реалистических расчетов на базе общей теории относительности тогда было просто не потянуть, в чем авторы статьи и признались. Тем не менее, они отметили, что найденное ими решение, скорее всего, приблизительно отражает основные черты процесса гравитационного сжатия реальной звезды достаточно большой массы, которая полностью сожгла свое термоядерное топливо (стр. 457).

Для получения аналитического решения уравнений ОТО Оппенгеймер и Снайдер перешли к сопутствующим координатам, в которых тензор энергии-импульса в данном случае имеет единственную ненулевую компоненту T 4 4 , равную плотности вещества. На основе своей - повторю, сильно идеализированной - модели они пришли к заключению, что достаточно массивная звезда, успевшая сжечь термоядерное топливо, в ходе последующего сжатия стягивается к своему гравитационному радиусу. Этот процесс занимает бесконечно большое время с точки зрения удаленного наблюдателя, но может быть очень коротким для наблюдателя, который движется вместе со стягивающейся звездной материей. Например, согласно их вычислениям, гравитационный коллапс облака с первоначальной плотностью 1 г/см 3 и общей массой 10 33 г (следовательно, с радиусом порядка миллиона километров) с точки зрения такого наблюдателя займет всего лишь одни земные сутки. Приближаясь к гравитационному радиусу, «звезда полностью изолирует себя от любых контактов с удаленным наблюдателем; сохраняется только ее гравитационное поле» (стр. 456).

Из уравнений Оппенгеймера и Снайдера почти однозначно следует, что звезда по достижении гравитационного радиуса не останавливается и продолжает сжиматься к состоянию с бесконечно малым объемом и бесконечно высокой плотностью. Соавторы все же воздержались от столь радикального вывода и даже не предложили его в качестве гипотезы. К сожалению, тогда их замечательная работа не вызвала особого интереса - возможно, отчасти и потому, что ее публикация в точности совпала по дате с началом Второй мировой войны (1 сентября 1939 года). К тому же в то время физики и астрономы мало интересовались ОТО и плохо ее знали. Кажется, единственным физиком-теоретиком экстра-класса, который без задержки оценил ее по достоинству, был Ландау.

Чуть раньше Оппенгеймера и Снайдера проблеме гравитационного коллапса сферически симметричной системы невзаимодействующих частиц уделил внимание и сам Эйнштейн (Albert Einstein, 1939. Stationary System with Spherical Symmetry Consisting of Many Gravitating Masses). Эта статья, которую он представил к публикации за два месяца до них, оказалась неудачной. Эйнштейн не верил в шварцшильдовскую сингулярность, возникающую вблизи гравитационного радиуса, и потому постарался доказать, что она физически недостижима. Он использовал метрику Шварцшильда (правда, в нестандартной записи), однако сделал совершенно искусственное допущение, что все частицы движутся вокруг центра симметрии по круговым орбитам. Его вычисления показали, что рост массы такой системы приводит к увеличению центробежных сил, и это не позволяет ей сжиматься далее определенного предела. В итоге Эйнштейн с явным удовлетворением констатировал, что «сингулярность Шварцшильда не существует в физической реальности» (стр. 936). Он полагал, что этот вывод имеет общий характер, не ограниченный спецификой модели, в чем сильно ошибся. Некоторые историки науки вообще считают эту статью худшей из эйнштейновских научных работ. Насколько я знаю, история умалчивает о том, ознакомился ли Эйнштейн с моделью Оппенгеймера - Снайдера, и если да, то как он ее оценил.

Замечательные исследования Оппенгеймера - Волкова и Оппенгеймера - Снайдера стоят в начале долгой и славной истории приложения шварцшильдовского решения уравнений ОТО к анализу конкретных астрофизических моделей. Новые шаги в этом направлении были сделаны уже в послевоенное время, и их описание выходит за рамки моей статьи.

Поэтому ограничусь предельно кратким резюме. Физическая реальность черных дыр стала постепенно признаваться после открытия квазаров в конце 1950-х - начале 1960-х годов. Окончательное решение проблемы тотального коллапса очень массивных звезд, исчерпавших свое ядерное топливо, было найдено во второй половине ХХ века усилиями плеяды блестящих физиков-теоретиков, в том числе и советских, в основном, из группы Я. Б. Зельдовича. Оказалось, что подобный коллапс всегда сжимает звезду «до упора», полностью разрушая ее вещество и порождая черную дыру. Внутри дыры возникает сингулярность, «суперконцентрат» гравитационного поля, замкнутый в бесконечно малом объеме. У статичной дыры это точка, у вращающейся - кольцо. Кривизна пространства-времени и, следовательно, сила тяготения вблизи сингулярности стремятся к бесконечности (конечно, речь идет об описании на базе ОТО, которое не учитывает квантовых эффектов). Математическая теория черных дыр хорошо разработана и очень красива - и вся она исторически восходит к решению Шварцшильда.

Дополнение: автора, автора!

Официальным отцом термина «черная дыра» считается профессор Принстонского университета Джон Арчибальд Уилер (John Archibald Wheeler). В начале 1950-х годов он переключился с ядерной физики на ОТО и очень много сделал для превращения этих исследований в серьезную и быстро растущую область на стыке фундаментальной физики, астрофизики и космологии. Достоверно известно, что он говорил о черных дырах 29 декабря 1967 года, выступая на ежегодной конференции Американской ассоциации в поддержку науки (не исключено, что это выражение и до того несколько раз проскальзывало в его публичных лекциях). Вскоре его выступление появилось в печати (John Archibald Wheeler, 1968. Our Universe: The Known and the Unknown). Эффектное и запоминающееся название возникло очень вовремя, поскольку почти совпало по времени с первым сообщением об открытии радиопульсаров (A. Hewish et al., ). Оно полюбилось физикам и привело в восторг журналистов, которые разнесли его по всему миру.

Хотя Уилер бесспорно ввел термин «черная дыра» как в язык физики, так и в массовое обращение, изобрели его все же другие. Его этимология подробно разобрана в новой книге профессора MIT Марсии Бартусяк (Marcia Bartusiak , 2015. Black Hole: How an Idea Abandoned by Newtonians, Hated by Einstein, and Gambled on by Hawking Became Loved , стр. 137-141). Согласно ее разысканиям, уже в 1960 году коллега Уилера по физическому факультету Принстонского университета Роберт Дикке (Robert Dicke), который в начале второй половины прошлого века тоже занялся гравитацией, выступая на коллоквиуме в Институте продвинутых исследований, в шутку сравнил коллапс массивной звезды с «Калькуттской черной ямой» (Black Hole of Calcutta). В середине XVIII столетия так стали называть небольшую тюремную камеру в форте Уильям, который построила в Калькутте британская Ост-Индская Компания. В июне 1756 года новый правитель Бенгалии, Бихара и Ориссы Сирадж-уд-Дауда захватил форт Уильям и уморил в этой камере несколько десятков пленных англичан, которые погибли от удушья или теплового удара. С того времени выражение black hole закрепилось в английском языке как символ чего-то, откуда нет возврата. В этом смысле его и употребил Роберт Дикке.

Как говорится, лиха беда начало. Шуточному выражению Дикке была суждена долгая и почетная жизнь в совершенно новом значении. Название «черная дыра» несколько раз прозвучало в кулуарах Первого Техасского симпозиума по релятивистской астрофизике, который состоялся в Далласе в декабре 1963 года. Вскоре его использовал научный редактор журнала Life Альберт Розенфельд, который опубликовал репортаж об этой встрече. Его первое появление в научной печати имело место 18 января 1964 года, когда в журнале Science News Letters была помещена заметка о встрече астрономов на ежегодной сессии Американской Ассоциации в поддержку науки, которая прошла в конце декабря в Кливленде. Согласно автору заметки Энн Эвинг, это выражение не раз употреблял физик из Института Годдарда Хонг-И Чиу (Hong-Yee Chiu), который признался, что впервые услышал его от Дикке парой лет раньше. Так что пальма первенства в именовании полностью сколлапсировавших звезд черными дырами скорее всего принадлежит Роберту Дикке. Интересно, что Чиу в 1964 году и сам придумал новый астрофизический термин, а именно «квазар».

В общем, выражение «черная дыра» как название финальной стадии гравитационного коллапса самых массивных звезд эпизодически использовалось и до Уилера. Такова реальная история.

Дополнение: постсолнечный карлик

Звезды главной последовательности идут к превращению в белые карлики разными путями и за разное время - в зависимости от своей начальной массы. Иллюстрации ради посмотрим, как и когда станет белым карликом наша звезда, родное Солнце. Его судьба давно и надежно просчитана.

Вот стандартный сценарий. По мере уменьшения запасов водорода солнечное ядро постепенно сжимается и разогревается, что увеличивает светимость Солнца. С момента превращения в звезду главной последовательности она уже выросла на 25–30% - и процесс идет и будет идти. Через 5,4 миллиарда лет температура центральной зоны Солнца повысится настолько, что водород загорится не только в ядре, но и в прилегающем слое. Давление в этой зоне быстро увеличится, Солнце потеряет гидростатическую устойчивость и начнет расширяться, превращаясь в красный гигант. Этот процесс займет около 2 миллиардов лет и приведет к тому, что солнечный радиус вырастет примерно в 250 раз, светимость увеличится в 2700 раз, а температура поверхности упадет до 2600 кельвинов. В этой фазе многократно возрастет интенсивность солнечного ветра, в результате чего Солнце потеряет около 30% массы.

На этом изменения не закончатся. Когда возраст Солнца приблизится к 12 миллиардам лет, температура ядра достигнет сотни миллионов градусов, и тогда в его центре загорится гелий с образованием углерода и кислорода. В это время Солнце сожмется примерно в 20 раз, так что его радиус составит 11 радиусов стабильного периода. Температура поверхности вновь повысится, хотя и не до прежнего уровня - только до 4770 кельвинов (так что Солнце из красного станет оранжевым).

Стадия гелиевого горения будет не слишком продолжительной - примерно 100 миллионов лет. На периферии в это время будет дожигаться водород, причем зона его сгорания вновь сдвинется по направлению к поверхности. К концу этой эпохи гелий загорится вокруг ядра, в то время как в самом ядре реакции синтеза уже прекратятся. Солнце опять дестабилизируется, его внешние слои вторично раздуются примерно до прежнего максимума, и оно превратится в асимптотический красный гигант с температурой поверхности около 3500 кельвинов.

Жизненный срок этого исполина окажется совсем коротким, всего лишь 30 миллионов лет. В центре его ядра быстро накопится большое количество углерода и кислорода, которые вспыхнуть уже не смогут - не хватит температуры. Внешний гелиевый слой будет продолжать гореть, постепенно расширяясь и в силу этого охлаждаясь. Скорость термоядерного сгорания гелия чрезвычайно быстро растет с повышением температуры и падает с ее снижением. Поэтому внутренности асимптотического красного гиганта начнут сильно пульсировать и в конце концов его атмосфера окажется выброшенной в окружающий космос со скоростью в десятки километров в секунду. Сначала разлетающаяся звездная оболочка под действием ионизирующего ультрафиолетового излучения нижележащих звездных слоев ярко засияет голубым и зеленым светом (такие светящиеся оболочки по чисто историческим причинам называются планетарными туманностями). Но уже через тысячи или, в крайнем случае, десятки тысяч лет она остынет, потемнеет и рассеется в пространстве.

Что касается оставшегося оголенным ядра, то там превращение элементов прекратится вовсе, и оно будет светить лишь за счет накопленной тепловой энергии, все больше и больше остывая и угасая. Сжаться в нейтронную звезду или черную дыру оно не сможет, не хватит массы. В результате на месте Солнца возникнет белый карлик, состоящий из ядер углерода и кислорода, погруженных в вырожденный электронный газ. Его масса составит 54% нынешней массы нашего светила, то есть, сильно не дотянет до предела Чандрасекара, поэтому электронный газ будет нерелятивистским. Где-то через триллион лет он остынет до десятков градусов Кельвина, практически перестанет излучать тепло и станет черным карликом.

Если бы наша Галактика была обречена на одиночное путешествие по Космосу, этот прогноз имел бы стопроцентную достоверность. Однако через 4 миллиарда лет Млечный Путь встретится и сольется с соседней Андромедой, образовав новую гигантскую галактику. В еще более отдаленном будущем ей суждено объединение с галактикой М33, она же галактика Треугольника. Нельзя заранее исключить того, что в этой звездной ассоциации ставшее белым карликом Солнце окажется членом тесной бинарной системы, имея в качестве партнера звезду главной последовательности или красный гигант. Если ее вещество начнет перетекать на поверхность Солнца, может случиться так, что Солнце или станет новой звездой, или даже превратится в сверхновую типа Ia и полностью исчезнет в чудовищном по силе взрыве. Однако, насколько можно судить, вероятность такого исхода очень мала, так что стандартный сценарий имеет все шансы на осуществление.

Алексей Левин


ШВАРЦШИЛЬДА ПРОСТРАНСТВО-ВРЕМЯ -пространство-время вне массивного невращающегося тела в (тензор Риччи R ik = 0). Элемент длины ds определяется выражением

где r , q, f - сферические координаты с центром в центре массивного тела, M - масса тела. Это решение ур-ний Эйнштейна общей теории относительности было найдено К. Шварцшильдом (К. Schwarzschild, 1916). Величина r q = 2GМ/с 2 наз. радиусом Шварцшильда или гравитационным радиусом . Ш. п--в. является асимптотически плоским при r и обладает там правильной ньютоновской асимптотикой: , где -ньютоновский гравитационный потенциал.

На поверхности массивного тела метрика Ш.п--в. (1) должна непрерывно сшиваться с метрикой, описывающей пространство-время внутри тела. При этом радиальная координата поверхности тела в Ш. п--в. должна быть больше r q , иначе равновесие тела невозможно. Ш. п--в. имеет смысл и в отсутствие центрального тела. Тогда его можно аналитически продолжить под гравитационный радиус, в область r, используя др. системы отсчёта [Д. Финкель-штейн (D. Finkelstein), 1958]. Поверхность r = r q является изотропной, так что все массивные или безмассовые частицы могут пересекать её только в одну сторону (из-за этого её также называют горизонтом). Если граничные условия при r = r q таковы, что частицы пересекают гравитационный радиус в сторону уменьшения r , то Ш.п--в. описывает чёрную дыру , образовавшуюся в результате коллапса первоначально регулярного распределения материи (напр., звезды), и тогда поверхность r = r q является горизонтом событий. В противном случае Ш.п--в. содержит белую дыру . В области под гравитационным радиусом частицы могут двигаться либо только в сторону уменьшения r в случае чёрной дыры, либо только в обратную сторону в случае белой дыры. Максимальное аналитическое продолжение Ш.п--в. в отсутствие вещества содержит и чёрную, и белую дыры (внутри каждой из к-рых находится поверхность r = 0) ,

а также две несвязанные пространственные асимптотически-плоские бесконечности r . Однако такое максимальное расширение Ш. п--в. не является физическим в том смысле, что оно не может возникнуть как результат динамической эволюции регулярного распределения материи. Его тензор кривизны конечен и регулярен при r 0. Две несвязанные поверхности r = 0, на к-рых он расходится, есть 3-мерные пространственноподобные гиперповерхности. Поэтому нельзя сказать, что r = 0 есть "центр" Ш. п--в., в отличие от случая центрального тела с радиусом r 0 >r q .

Можно доказать, что Ш.п--в.- единственное статическое вакуумное асимптотически-плоское решение ур-ний общей теории относительности. Ш. п--в., описывающее чёрную дыру, устойчиво: малые возмущения метрики (1) общего вида затухают по степенному закону при t (показатель степени определяется мультипольностью возмущения). Гравитационная энергия связи тел массой т<<М , двигающихся по устойчивым круговым орбитам в Ш.п--в., может достигать 6% от (С. А. Каплан, 1949). Частицы, падающие в чёрную дыру, достигают поверхности горизонта событий за конечное собственное время ~r q /с , но за бесконечный интервал времени t с точки зрения любого внеш. наблюдателя, не падающего в чёрную дыру. Это утверждение остаётся верным и в случае нестационарной чёрной дыры, масса к-рой растёт из-за поглощения (аккреции )ею окружающего вещества [при этом, однако, следует помнить, что в случае аккреции на чёрную дыру радиус поверхности горизонта событий r h ,(t )всегда несколько больше текущего гравитационного радиуса r q (t )]. После пересечения горизонта событий частицы достигают сингулярности r = 0 также за конечный интервал собственного времени. Внеш. наблюдатель этого не увидит никогда.

Лит.: Ландау Л. Д., Лифшиц E. M., Теория поля, 7 изд., M., 1988; Хокинг С., Эллис Дж., Крупномасштабная структура пространства-времени, пер. с англ., M., 1977.

А. А. Старобинский .