На тему состояние невесомости. Что такое невесомость с точки зрения физика и космонавта? Муниципальное общеобразовательное учреждение

Наша сегодняшняя встреча посвящена удивительному свойству материи - гравитации (тяготению). Притяжение Земли настолько привычно и естественно, что мы его не замечаем. Но что мы знаем о земном тяготении?

Разберемся, как возникает, от чего зависит и как проявляется земная гравитация.

Сила тяжести

Взаимное притяжение всех тел во Вселенной было открыто . Это притяжение и получило название гравитационного взаимодействия.

Им же была установлена зависимость этих сил от массы взаимодействующих тел и расстояния между ними.

Чем больше масса тел, тем больше сила их притяжения. Зато с увеличением расстояния она уменьшается.

Для нас - землян особенно важна сила тяготения нашей планеты. Сила, с которой Земля притягивает к себе тело, принято называть силой тяжести.

Она убывает по мере удаления от земной поверхности и всегда направлена к центру Земли. То есть земной шар притягивает внешние тела так, как материальная точка. Наша планета слегка сплюснута у полюсов (около 27 км), и тяготение в этих точках, немного превышает притяжение на экваторе или в других широтах. Соответственно сила тяжести на вершине горы немного меньше чем у ее подножья.

Для обозначения этой силы используется символ F тяж.

Вес тела, невесомость

Итак, сила тяжести это результат взаимодействия тел с Землей. Но в повседневной жизни мы часто используем понятие веса тела. Выясним, что это за величина.

Для этого мысленно перенесемся в неподвижный лифт. Вес его пассажиров P будет равен силе тяжести (P = F тяж). В поднимающемся с ускорением лифте, сила тяжести неизменна, а вот вес начнет увеличиваться. Это ощущается как увеличение давления со стороны опоры - пола. Лифт опускается, постепенно замедляя скорость. Давление опоры станет меньше, т.е. при неизменной силе тяжести вес уменьшается.

… Следы, оставленные человеком, животными или транспортом на влажном песке или снегу, как раз и подтверждают действие этих тел на опору.

Вес тела это та сила, с которой неподвижные тела действуют на опору или растягивают подвес.

Нужно помнить, что сила тяжести приложена к центру предмета, а вес - к опоре или подвесу.

Что произойдет с весом тела, если опора или подвес исчезнет? Тело начнет свободное падение. А поскольку исчезло сопротивление его дальнейшему движению, вес тела станет равным нулю. Для тел, находящихся в свободном падении, наступает состояние невесомости.

Невесом летящий парашютист до раскрытия парашюта, посетители аттракциона «американские горки» после прохождения наивысшей точки, и, вообще, каждый прыжок вверх это несколько секунд невесомости перед приземлением.

Но почему испытывают невесомость космонавты на орбите после выключения двигателей на космическом корабле? Взаимодействуя с Землей, эти космические объекты стремятся к свободному падению, но их горизонтальная скорость столь велика (около 8 км/c), что упасть они не могут и летят по своей орбите, описывая виток за витком вокруг Земли.

Влияние Архимедовой силы на вес тела

До сих пор мы рассматривали проявления силы тяжести, считая, что взаимодействие осуществляется в безвоздушной среде. А как наличие газа или жидкости повлияет на вес тела?

Ответ на этот вопрос дал один из достойнейших сыновей древней Греции — Архимед еще 3 тысячи лет до нашей эры.

Учёный утверждал, что в результате взаимодействия тела со средой (жидкостью или газом) возникает выталкивающая сила, направленная вертикально вверх. Её численное значение равно весу жидкости, вытесненной телом.

Вес тела в жидкости или газе всегда меньше веса этого тела в вакууме на величину выталкивающей силы.

Если же предмет герметично прижат ко дну Архимедова сила не возникает.

Масса

С понятием веса мы уже знакомы. Поговорим о массе:

  • Изначально под массой понимали количество вещества, заключённое в теле.
  • Затем была установлена её связь с инертностью. Чем больше масса, тем более инертно тело.
  • Она определяет и гравитационные особенности тела. Более массивные тела обладают большей силой тяготения.
  • Масса данного тела будет одинаковой как на Земле, так и на Луне или на любой другой планете. Она не зависит и от географической широты.
  • Для её обозначения используют букву m, измеряют в кг.

Вес же, как любая сила, измеряется в ньютонах (Н). Существует формула, связывающая массу и вес тела:

здесь g - ускорение свободного падения.

Свободное падение

Падение тел изучал итальянский учёный Галилей. Он наблюдал за движением тел, сбрасывая их с очень высокой наклонной башни, расположенной в городе Пизе. По имени города эта башня высотой 55 м и получила название Пизанской.

Галилей одновременно сбрасывал пушечное ядро весом 80 кг и маленький металлический шарик. Касались земли они почти в одно и то же время. Ученый сделал вывод, что единственной причиной, неодновременного приземления шаров является сопротивление воздуха.

Падение тел в безвоздушном пространстве только под действием силы тяжести называют свободным падением.

В земных условиях мы можем наблюдать это явление лишь приближенно. Потому, что атмосферный воздух является помехой свободно падающему телу.

При этом движении скорость падающих тел каждую секунду увеличивается на 9,81 м/с.

То есть ускорение свободного падения g = 9,81 м/ и лишь слегка изменяется при изменении географической широты места. В расчетах часто принимают g = 10 м/c 2 .

На Луне, где сила притяжения меньше в 6 раз, g = 1,6 м/c 2 .

Сейчас идет очень активное изучение «красной планеты» - Марса. Его масса почти в 10 раз меньше чем у нашей родной планеты. Казалось бы, что и вес тел должен уменьшаться тоже в 10 раз. Однако, радиус Марса почти в 2 раза уступает земному радиусу, что приводит к увеличению силы тяжести почти в 4 раза. В конечном счете, сила тяжести, как и вес тела, составят лишь 1/3 часть земной силы тяжести.

Точно так можно узнать силу тяжести тела на любой планете. Скажем, космонавт, вес которого на Земле 80 кг, на планете – гиганте Юпитер будет весить 161,2 кг.

Момент силы тяжести

У каждого тела есть центр тяжести. Если за него мысленно подвесить тело, оно сохранит первоначальное положение. Например, центр тяжести шара, находится в его геометрическом центре. Чем ниже положение центра тяжести, тем устойчивее положение тела. Поэтому лыжник, мчащийся с горы, слегка приседает. Тем самым он смещает свой центр тяжести книзу, увеличивая этим свою устойчивость.

«Знакома» с законами физики и всем известная игрушка- неваляшка. Её центр тяжести находится внизу, поскольку там закреплен грузик. И даже незначительное отклонение этой игрушки в сторону приподнимает центр тяжести. Сила тяжести создает вращающий момент, восстанавливающий вертикальное положение тела.

Момент силы тяжести – это произведение силы тяжести на плечо этой силы:

M= F тяж L=mgL,

где
M - момент силы тяжести;
L - плечо этой силы, т е. перпендикуляр между линией приложения силы и центром вращения.
Единицей измерения вращающего момента является 1Нм.

Размещая грузы в автомобилях или на морских судах, всегда располагают их как можно ниже. Это обеспечивает устойчивость, предохраняет грузовой транспорт от опрокидывания.

Работа силы тяжести

Совершает ли работу свободно падающее тело? Например, метеорит, прилетевший к нам из космических глубин, яблоко, упавшее с ветки или ниспадающий водопад.

При любом вертикальном изменении положения тела, его центр тяжести либо опускается, либо поднимается. Сила тяжести при этом совершает работу

где mg = F тяж.

Если тело опускается - работа положительна, поднимается - отрицательна. На замкнутом пути, когда тело брошено вертикально вверх, а затем, свободно падая, возвращается в исходную точку, работа равна 0.

Заключение

Сила тяжести сыграла огромную роль в приспособлении человека и животных для жизни на суше. Благодаря силе гравитации мы ходим по земле, а не улетаем в космос. Она удерживает атмосферу планет и воду в мировом океане. Ей мы обязаны движением планет и их спутников в нашей солнечной системе.

Наше знакомство с земной гравитацией закончено. Много веков люди ищут способы освобождения от земных пут. Пока секреты антигравитации не раскрыты.

Но человечеству удалось преодолеть земную гравитацию и достичь фантастических успехов в освоении космоса.

Если это сообщение тебе пригодилось, буда рада видеть тебя

Что такое невесомость? Парящие чашки, возможность летать и ходить по потолку, с легкостью перемещать даже самые массивные предметы — таково романтическое представление об этом физическом понятии.

Если спросить космонавта, что такое невесомость, он поведает, как сложно бывает в первую неделю на борту станции и как долго по возвращении приходится восстанавливаться, привыкая к условиям земного притяжения. Физик же, скорее всего, опустит подобные нюансы и с математической точностью раскроет понятие при помощи формул и цифр.

Определение

Начнем наше знакомство с явлением с раскрытия научной сути вопроса. Невесомость физика определяет как такое состояние тела, когда его движение или же внешние силы, воздействующие на него, не приводят к взаимному давлению частиц друг на друга. Последнее возникает всегда на нашей планете, когда какой-либо предмет перемещается или покоится: на него давит сила тяжести и противоположно направленная реакция поверхности, на которой объект расположен.

Исключение из этого правила — случаи то есть падения со скоростью, которое придает телу сила тяжести. В таком процессе отсутствует давление частиц друг на друга, появляется невесомость. Физика говорит, что на таком же принципе основано состояние, возникающее в космических кораблях и иногда в самолетах. Невесомость появляется в этих аппаратах, когда они движутся с постоянной скоростью в любом направлении и при этом находятся в состоянии свободного падения. Искусственный спутник или доставляется на орбиту при помощи ракеты-носителя. Она придает им определенную скорость, которая сохраняется после выключения аппаратом собственных двигателей. Корабль при этом начинает перемещаться только под действием силы тяжести и возникает невесомость.

Дома

Последствия полетов для астронавтов этим не ограничиваются. После возвращения на Землю им приходится в течение некоторого времени адаптироваться обратно к силе тяжести. Что такое невесомость для космонавта, завершившего полет? Прежде всего это привычка. Сознание еще какой-то период отказывается принять факт наличия силы тяжести. В результате нередки случаи, когда космонавт вместо того, чтобы поставить чашку на стол, просто отпускал ее и осознавал ошибку, только услышав звон разбитой об пол посуды.

Питание

Одна из непростых и одновременно интересных задач для организаторов пилотируемых полетов — обеспечение космонавтов легко усваиваемой организмом под воздействием невесомости едой в удобной форме. Первые опыты не вызывали особого энтузиазма среди членов экипажей. Показателен в этом плане случай, когда американский астронавт Джон Янг вопреки строгим запретам пронес на борт сэндвич, есть который, правда, не стали, чтобы не нарушать устав еще больше.

На сегодняшний день с разнообразием на проблем нет. Перечень блюд, доступных для российских космонавтов, насчитывает 250 пунктов. Иногда грузовой корабль, стартующий к станции, доставляет свежее блюдо, заказанное кем-то из команды.

Основу рациона составляют Все жидкие блюда, напитки, а также пюре упаковываются в алюминиевые тубы. Тара и оболочка продуктов продумывается таким образом, чтобы избежать появления крошек, парящих в невесомости и могущих попасть кому-то в глаз. Например, печенье делается достаточно маленьким и покрытым оболочкой, тающей во рту.

Знакомая обстановка

На станциях, подобных МКС, все условия стараются довести до привычных земных. Это и национальные блюда в меню, и необходимое как для функционирования организма, так и для нормальной работы аппаратуры движение воздуха, и даже обозначение пола и потолка. Последнее имеет, скорее, психологическую значимость. Космонавту в невесомости все равно, в каком положении работать, однако выделение условного пола и потолка снижает риск потери ориентации и способствует более быстрой адаптации.

Невесомость — одна из тех причин, почему в космонавты берут далеко не всех. Адаптация по прибытии на станцию и после возвращения на Землю сравнима с акклиматизацией, усиленной в несколько раз. Человек со слабым здоровьем такой нагрузки может не выдержать.

Весу как силе, с которой любое тело действует на поверхность, опору либо подвес. Возникает вес вследствие гравитационного притяжения Земли. Численно вес равен силе тяжести, но последняя приложена к центру масс тела, вес же приложен к опоре.

Невесомость - нулевой вес, может возникать, если отсутствует сила тяготения, то есть тело достаточно от массивных объектов, которые могут притягивать его.

Международная Космическая Станция находится на расстоянии 350 км от Земли. На таком удалении ускорение свободного падения (g) составляет 8,8 м/с2, что всего на 10% меньше, чем на поверхности планеты.

На практике редко встретишь - гравитационное воздействие существует всегда. На космонавтов, находящихся на МКС, по-прежнему действует Земля, однако невесомость там присутствует.

Другой случай невесомости возникает, если сила тяжести компенсирована другими силами. Например, МКС подвержена силе тяжести, незначительно уменьшенной за счет расстояния, но также станция движется по круговой орбите с первой космической скоростью и центробежная сила компенсирует тяготение.

Невесомость на Земле

Явление невесомости возможно и на Земле. Под воздействием ускорения вес тела может уменьшаться, и даже становится отрицательным. Классический пример, который приводят физики - падающий лифт.

Если лифт движется вниз с ускорением, то давление на пол лифта, а, следовательно, и вес, будет уменьшатся. Причем если ускорение равно ускорению свободного падения, то есть лифт падает, вес тел станет нулевым.

Отрицательный вес наблюдается, если ускорение движения лифта превысит ускорение свободного падения - тела находящиеся внутри «прилипнут» к потолку кабины.

Этот эффект широко применяется для симуляции невесомости при подготовке космонавтов. Самолет, оборудованный камерой для тренировок, поднимается на значительную высоту. После чего пикирует вниз по баллистической траектории, по сути, у поверхности земли машина выравнивается. При пикировании с 11 тысяч метров можно получить 40 секунд невесомости, которыми и пользуются для тренировок.

Существует заблуждение, что подобные выполняют сложные фигуры, наподобие «петли Нестерова», для получения невесомости. На самом деле для тренировок используются доработанные серийные пассажирские самолеты, которые неспособны на сложные маневры.

Физическое выражение

Физическая формула веса (P) при ускоренном движении опоры, будь то падающий лиф или пикирующий самолет, имеет следующий вид:

где m – масса тела,
g – ускорение свободного падения,
a – ускорение опоры.

При равенстве g и a, P=0, то есть достигается невесомость.

На прошлых уроках мы с вами разобрали, что такое сила всемирного тяготения и ее частный случай - сила тяжести, которая действует на тела, находящиеся на Земле.

Сила тяжести - сила, действующая на любое материальное тело, находящееся вблизи поверхности Земли или другого астрономического тела. Сила тяжести играет важнейшую роль в нашей жизни, поскольку ее воздействию подвержено все, что нас окружает. Сегодня мы разберем еще одну силу, которая чаще всего связана с силой тяжести. Это сила - вес тела. Тема сегодняшнего урока: «Вес тела. Невесомость»

Под действием силы упругости, которая приложена к верхнему краю тела, это тело, в свою очередь, также деформируется, возникает другая сила упругости, обусловленная деформацией тела. Эта сила приложена к нижнему краю пружины. Кроме того, она равна по модулю силе упругости пружины и направлена вниз. Именно эту силу упругости тела мы и будем называть его весом, то есть вес тела приложен к пружине и направлен вниз.

После того как колебания тела на пружине затухнут, система придет в состояние равновесия, в котором сумма сил, действующих на тело, будет равна нулю. Это значит, что сила тяжести равна по модулю и противоположна по направлению силе упругости пружины (Рис. 2). Последняя равна по модулю и противоположна по направлению весу тела, как мы уже выяснили. Значит, сила тяжести по модулю равна весу тела. Данное соотношение не универсально, но в нашем примере - справедливо.

Рис. 2. Вес и сила тяжести ()

Приведенная формула не означает, что сила тяжести и вес - одно и то же. Эти две силы разные по своей природе. Вес - это сила упругости, приложенная к подвесу со стороны тела, а сила тяжести - это сила, приложенная к телу со стороны Земли.

Рис. 3. Вес и сила тяжести тела на подвесе и на опоре ()

Выясним некоторые особенности веса. Вес - это сила, с которой тело давит на опору или растягивает подвес, из этого следует, что если тело не подвешено или не закреплено на опоре, то его вес равен нулю. Данный вывод кажется противоречивым нашему повседневному опыту. Однако он имеет вполне справедливые физические примеры.

Если пружину с подвешенным к ней телом отпустить и позволить ей свободно падать, то указатель динамометра будет показывать нулевое значение (Рис. 4). Причина этого проста: груз и динамометр движутся с одинаковым ускорением (g) и одинаковой нулевой начальной скоростью (V 0). Нижний конец пружины движется синхронно с грузом, при этом пружина не деформируется и силы упругости в пружине не возникает. Следовательно, не возникает и встречной силы упругости, которая является весом тела, то есть тело не обладает весом, или является невесомым.

Рис. 4. Свободное падение пружины с подвешенным к ней телом ()

Состояние невесомости возникает благодаря тому, что в земных условиях сила тяжести сообщает всем телам одинаковое ускорение, так называемое ускорение свободного падения. Для нашего примера мы можем сказать, что груз и динамометр движутся с одинаковым ускорением. Если на тело действует только сила тяжести или только сила всемирного тяготения, то это тело находится в состоянии невесомости. Важно понимать, что в этом случае исчезает только вес тела, но не сила тяжести, действующая на это тело.

Состояние невесомости - не экзотика, довольно часто многие из вас его испытывали - любой человек, подпрыгивающий или спрыгивающий с какой либо высоты, до момента приземления находится в состоянии невесомости.

Рассмотрим случай, когда динамометр и прикрепленное к его пружине тело движутся вниз с некоторым ускорением, но не совершают при этом свободного падения. Показания динамометра уменьшатся по сравнению с показаниями при неподвижном грузе и пружине, значит, вес тела стал меньше, чем он был в состоянии покоя. В чем причина такого уменьшения? Дадим математическое объяснение, опираясь на второй закон Ньютона.

Рис. 5. Математическое объяснение веса тела ()

На тело действуют две силы: сила тяжести, направленная вниз, и сила упругости пружины, направленная вверх. Эти две силы сообщают телу ускорение. и уравнение движения будет иметь вид:

Выберем ось y (Рис. 5), поскольку все силы направлены вертикально, нам достаточно одной оси. В результате проецирования и переноса слагаемых получим - модуль силы упругости будет равен:

ma = mg - F упр

F упр = mg - ma,

где в левой и правой части уравнения стоят проекции сил, указанных во втором законе Ньютона, на ось y. Согласно определению, вес тела по модулю равен силе упругости пружины, и, подставив ее значение, получим:

P = F упр = mg - ma = m(g - а)

Вес тела равен произведению массы тела на разность ускорений. Из полученной формулы видно, что если модуль ускорения тела меньше модуля ускорения свободного падения, то вес тела меньше силы тяжести, то есть вес тела, движущегося ускоренно, меньше веса покоящегося тела.

Рассмотрим случай, когда тело с грузиком движется ускоренно вверх (Рис. 6).

Стрелка динамометра покажет значение веса тела большее, чем покоящегося груза.

Рис. 6. Тело с грузиком движется ускоренно вверх ()

Тело движется вверх, и его ускорение направлено туда же, следовательно, нам необходимо поменять знак проекции ускорения на ось у.

Из формулы видно, что теперь вес тела больше силы тяжести, то есть больше веса покоящегося тела.

Увеличение веса тела, вызванное его ускоренным движением, называется перегрузкой .

Это справедливо не только для тела, подвешенного на пружине, но и для тела, укрепленного на опоре.

Рассмотрим пример, в котором проявляется изменение тела при его ускоренном движении (Рис. 7).

Автомобиль движется по мосту выпуклой траектории, то есть по криволинейной траектории. Будем считать форму моста дугой окружности. Из кинематики мы знаем, что автомобиль движется с центростремительным ускорением, величина которого равна квадрату скорости, деленной на радиус кривизны моста. В момент нахождения его в наивысшей точке, это ускорение будет направлено вертикально вниз. Согласно второму закону Ньютона это ускорение сообщается автомобилю равнодействующей силой тяжести и силой реакции опоры.

Выберем координатную ось у, направленную вертикально вверх, и запишем это уравнение в проекции на выбранную ось, подставим значения и проведем преобразования:

Рис. 7. Наивысшая точка нахождения автомобиля ()

Вес автомобиля, по третьему закону Ньютона, равен по модулю силе реакции опоры (), при этом мы видим, что вес автомобиля по модулю меньше силы тяжести, то есть меньше веса неподвижного автомобиля.

Ракета при старте с Земли движется вертикально вверх с ускорением а=20 м/с 2 . Каков вес летчика-космонавта, находящегося в кабине ракеты, если его масса m=80 кг?

Совершенно очевидно, что ускорение ракеты направлено вверх и для решения мы должны использовать формулу веса тела для случая с перегрузом (Рис. 8).

Рис. 8. Иллюстрация к задаче

Необходимо отметить, что если неподвижное относительно Земли тело имеет вес 2400 Н, то его масса составляет 240 кг, то есть космонавт ощущает себя в три раза массивнее, чем есть на самом деле.

Мы разобрали понятие веса тела, выяснили основные свойства этой величины и получили формулы, которые позволяют нам рассчитать вес тела, движущегося с ускорением.

Если тело движется вертикально вниз, при этом модуль его ускорения меньше ускорения свободного падения, то вес тела уменьшается по сравнению со значением веса неподвижного тела.

Если тело движется ускоренно вертикально вверх, то его вес возрастает и при этом тело испытывает перегруз.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Дать определение весу тела.
  2. В чем различие между весом тела и силой тяжести?
  3. Когда возникает состояние невесомости?
  1. Интернет-портал Physics.kgsu.ru ().
  2. Интернет-портал Festival.1september.ru ().
  3. Интернет-портал Terver.ru ().

Все мы слышали о невесомости. При этом слове мы представляем себе космонавтов, свободно плавающих внутри космической станции. Давайте с вами попытаемся ответить на простой с виду вопрос: что же такое эта самая невесомость?
НЕ ВЕСОМОСТЬ, то есть отсутствие у тела веса. То есть, чтобы правильно понять, что такое невесомость, мы должны чётко себе представлять, что такое вес тела.


Вес — сила воздействия тела на опору (или подвес или другой вид крепления), препятствующую падению, возникающая в поле сил тяжести. Определяется выражением:

P = mg , где:

Р - вес тела, m - масса тела, g - ускорение свободного падения.

Значение веса пропорционально ускорению свободного падения, которое зависит от высоты над земной поверхностью, а также ввиду ее вращения - от географических координат точки измерения.

При движении системы тело — опора (или подвес) относительно инерциальной системы отсчёта c ускорением а вес перестаёт совпадать с силой тяжести, действующей на это тело:

P = m(g - а)


В результате вращения Земли существует широтное уменьшение веса: на экваторе примерно на 0,3 % меньше, чем на полюсах.

Надо ещё отметить, что согласно Третьему Закону Ньютона, не только тело воздействует на опору (подвес), но и опора (подвес) воздействуют на тело с силой, называемой силой реакции опоры (подвеса). Эта сила численно равна весу тела и направлена противоположно действию силы тяжести. Тогда, на тело действуют две силы, равные по величине и противоположные по направлению, то есть их равнодействующая равна нулю, значит тело либо покоится, либо движется равномерно и прямолинейно.

Значит, невесомость (отсутствие веса) - это состояние, в котором отсутствует сила взаимодействия тела с опорой (или подвесом), возникающая в связи с гравитационным притяжением, действием других массовых сил, в частности силы инерции, возникающей при ускоренном движении тела.

Тогда, давайте подумаем, что будет, если и тело и его опора будут падать в поле сил тяготения. Тогда, так как и опора и тело будут двигаться с одинаковой скоростью, тело не будет давить своей массой на эту опору, то есть не будет воздействовать на неё. То есть вес тела (сила, с которой оно воздействует на опору) равен нулю. Где это можно наблюдать на практике? Представим себе кабину лифта, сорвавшуюся с тросов и свободно падающую в шахте. И кабина и пассажир двигаются с одинаковым ускорением g = 9,8 м/с 2 . Тогда, пассажир не будет воздействовать на пол лифта, то есть будет испытывать состояние невесомости. Тогда он сможет свободно плавать в пространстве кабины лифта. Естественно, этот эксперимент обычно приводит к гибели подопытного. Но есть более привычная ситуация. Когда лифт только начинает движение вниз (то есть движется ускоренно, набирая свою обычную скорость), ваше тело ещё не набрало этой скорости и почти не давит на пол, значит - почти ничего не весит. Потом, когда лифт разогнался и далее движется равномерно, вместе с ним равномерно движетесь и вы, следовательно, вы как обычно давите своим телом на опору (пол лифта), значит состояния невесомости нет.

Полёт на космическом аппарате, вращающемся по орбите вокруг Земли, представляет собой не что иное, как постоянное падение на Землю. Просто, аппарат движется по орбите с очень большой скоростью(ок. 8 км/сек), и падая на Землю (вертикально), он успевает пройти в горизонтальном направлении такое расстояние, что в виду шарообразности Земли, расстояние до её поверхности не уменьшается. Тело падает, при этом не падая. Парадокс? Реальность!

То есть, кабина космического аппарата - это тот же лифт, сорвавшийся с тросов. И все тела, находящиеся внутри неё будут испытывать состояние невесомости. Они будут свободно плавать в кабине космического аппарата, при этом будут иметь место несколько интересных эффектов, о которых я расскажу в одном из следующих постов.


Для тренировки космонавтов на Земле мы можем кратковременно создавать состояние невесомости. Специальный самолёт пикирует по гиперболической траектории, то есть фактически падает с ускорением g, падают с тем же ускорением и люди в его кабине. То есть, они пребывают в состоянии невесомости. Таким способом можно создавать невесомость на время порядка одной минуты, после чего самолёт переходит из пикирования в набор высоты, а потом снова пикирует и всё повторяется опять. Так невесомость можно создать и на Земле.

Очень важным является понимание того, что вес и масса тела строго говоря не есть одно и то же, хотя в обиходе понятие "вес" часто употребляется, когда речь идёт о массе тел. Определение весу тела уже было дано выше. А масса тела - это мера его инертности, то есть способности сохранять своё состояние покоя или равномерного прямолинейного движения при воздействии на него других тел, пытающихся это состояние изменить. Взаимодействие тел характеризуется такой величиной, как силой. При воздействии на тело силой F , ему сообщается ускорение а , зависящее от массы тела m :

a = F / m.

Мы видим, что чем больше масса тела, тем меньше ускорение, сообщённое ему силой той же величины. Если мы попытаемся проверить это сначала на Земле, а потом на борту космического аппарата (в невесомости), мы увидим, что это правило выполняется в обоих случаях. То есть, масса и вес тела - не одно и то же. Вес тела может и исчезать, а масса тела всегда сохраняется. Правда, в релятивистской механике, масса тел может изменяться (увеличиваться вплоть до бесконечности), но это уже совсем другая история, которая, правда тоже однажды станет объектом нашего рассмотрения.

А пока - до новых встреч. Спасибо всем, кто дочитал до конца, ибо "многобукав" даётся не каждому, а только самым любознательным.