Строение и свойства клеточных мембран. Строение и функции клеточной мембраны

Клеточная мембрана имеет достаточно сложное строение , которое можно рассмотреть в электронный микроскоп. Грубо говоря, она состоит из двойного слоя липидов (жиров), в который в разных местах включены различные пептиды (белки). Общая толщина мембраны составляет около 5-10 нм.

Общий план строения клеточной мембраны универсален для всего живого мира. Однако мембраны животных содержат включения холестерина, который определяет ее жесткость. Отличие мембран разных царств организмов в основном касается надмембранных образований (слоев). Так у растений и грибов над мембраной (с внешней стороны) находится клеточная стенка. У растений она состоит преимущественно из целлюлозы, а у грибов - из вещества хитина. У животных надмембранный слой называется гликокаликсом.

По-другому клеточная мембрана называется цитоплазматической мембраной или плазматической мембраной.

Более глубокое изучение строения клеточной мембраны открывает многие ее особенности, связанные с выполняемыми функциями .

Двойной слой липидов в основном состоит из фосфолипидов. Это жиры, один конец которых содержит остаток фосфорной кислоты, обладающий гидрофильными свойствами (т. е. притягивает молекулы воды). Второй конец фосфолипида - это цепи жирных кислот, обладающие гидрофобными свойствами (не образуют с водой водородных связей).

Молекулы фосфолипидов в клеточной мембране выстраиваются в два ряда так, что их гидрофобные «концы» находятся внутри, а гидрофильные «головки» – снаружи. Получается достаточно прочная структура, ограждающая содержимое клетки от внешней среды.

Белковые включения в клеточной мембране распределены неравномерно, кроме того они подвижны (так как фосфолипиды в бислое обладают боковой подвижностью). С 70-х годов XX века стали говорить о жидкостно-мозаичном строении клеточной мембраны .

В зависимости от того, как белок входит в состав мембраны, выделяют три типа белков: интегральные, полуинтегральные и периферические. Интегральные белки проходят через всю толщу мембраны, и их концы торчат по обеим ее сторонам. В основном выполняют транспортную функцию. У полуинтегральных белков один конец находится в толще мембраны, а второй выходит наружу (с внешней или внутренней) стороны. Выполняют ферментативную и рецепторную функции. Периферические белки находятся на внешней или внутренней поверхности мембраны.

Особенности строения клеточной мембраны говорят о том, что она является основным компонентом поверхностного комплекса клетки, но не единственным. Другими его компонентами являются надмембранный слой и субмембранный слой.

Гликокаликс (надмембранный слой животных) образуют олигосахариды и полисахариды, а также периферические белки и выступающие части интегральных белков. Компоненты гликокаликса выполняют рецепторную функцию.

Кроме гликокаликса у клеток животных бывают и другие надмембранные образования: слизи, хитин, перилемма (подобна мембране).

Надмембранным образованием у растений и грибов является клеточная стенка.

Субмембранный слой клетки - это поверхностная цитоплазма (гиалоплазма) с входящей в нее опорно-сократительной системой клетки, фибриллы которой взаимодействуют с белками, входящими в клеточную мембрану. По таким соединениям молекул передаются различные сигналы.

Строение биомембраны. Мембраны, ограничивающие клетки и мембранные органоиды эука­риотических клеток, имеют общий химический состав и строение. В их состав входят липиды, белки и углеводы. Липиды мембраны представлены в основном фосфолипидами и холестерином. Большинство белков мембран относится к сложным белкам, например гликопротеинам. Углеводы не встречаются в мембране самостоятельно, они связаны с белками и липидами. Толщина мемб­ран составляет 7-10 нм.

Согласно общепринятой в настоящее время жидкостно-мозаичной модели строения мембран, липиды образуют двойной слой, или липидный бислой, в котором гидрофильные «головки» моле­кул липидов обращены наружу, а гидрофобные «хвосты» спрятаны вовнутрь мембраны (рис. 2.24). Эти «хвосты» благодаря своей гидрофобности обеспечивают разделение водных фаз внутренней среды клетки и ее окружения. С липидами с помощью различных типов взаимодействия связаны белки. Часть белков расположена на поверхности мембраны. Такие белки называют перифери­ческими, или поверхностными. Другие белки частично или полностью погружены в мем­брану - это интегральные, или погруженные белки. Белки мембран выполняют структур­ную, транспортную, каталитическую, рецеп- торную и другие функции.

Мембраны не похожи на кристаллы, их компоненты постоянно находятся в движе­нии, вследствие чего между молекулами ли­пидов возникают разрывы - поры, через ко­торые в клетку могут попадать или покидать различные вещества.

Биологические мембраны различаются по расположению в клетке, химическому соста­ву и выполняемым функциям. Основные ти­пы мембран - плазматическая и внутренняя.

Плазматическая мембрана (рис. 2.24) содержит около 45% липидов (в т. ч. гликолипидов), 50% белков и 5 % углеводов. Цепочки углеводов, входящих в состав сложных белков-гликопротеинов и сложных липидов-гликолипидов, выступают над поверхностью мембраны. Гликопротеины плазмалеммы чрезвычайно специфичны. Так, например, по ним происходит взаимное узнавание клеток, в том числе сперматозоида и яйцеклетки.

На поверхности животных клеток углеводные цепочки образуют тонкий поверхностный слой - гликокаликс. Он выявлен почти во всех животных клетках, но степень его выраженности неодинакова (10-50 мкм). Гликокаликс обеспечивает непосредственную связь клетки с внешней средой, в нем происходит внеклеточное пищеварение; в гликокаликсе размещены рецепторы. Клетки бактерий, растений и грибов, помимо плазмалеммы, окружены еще и клеточными обо­лочками.

Внутренние мембраны эукариотических клеток разграничивают различные части клетки, об­разуя своеобразные «отсеки» - компартменты, что способствует разделению различных процес­сов обмена веществ и энергии. Они могут различаться по химическому составу и выполняемым функциям, но общий план строения у них сохраняется.

Функции мембран:

1. Ограничивающая. Заключается в том, что они отделяют внутреннее пространство клетки от внешней среды. Мембрана является полупроницаемой, то есть ее свободно преодолевают толь­ко те вещества, которые необходимы клетке, при этом существуют механизмы транспорта не­обходимых веществ.

2. Рецепторная. Связана в первую очередь с восприятием сигналов окружающей среды и пере­дачей этой информации внутрь клетки. За эту функцию отвечают специальные белки-рецеп­торы. Мембранные белки отвечают еще и за клеточное узнавание по принципу «свой-чужой», а также за образование межклеточных соединений, наиболее изученными из которых являют­ся синапсы нервных клеток.

3. Каталитическая. На мембранах расположены многочисленные ферментные комплексы, вследствие чего на них происходят интенсивные синтетические процессы.

4. Энерготрансформирующая. Связана с образованием энергии, ее запасанием в виде АТФ и рас­ходованием.

5. Компартментализация. Мембраны разграничивают также пространство внутри клетки, раз­деляя тем самым исходные вещества реакции и ферменты, которые могут осуществлять соот­ветствующие реакции.

6. Образование межклеточных контактов. Несмотря на то, что толщина мембраны настолько мала, что ее невозможно различить невооруженным глазом, она, с одной стороны, служит до­статочно надежным барьером для ионов и молекул, в особенности водорастворимых, а с дру­гой - обеспечивает их перенос в клетку и наружу.

Мембранный транспорт. В связи с тем, что клетки как элементарные биологические систе­мы являются открытыми системами, для обеспечения обмена веществ и энергии, поддержания гомеостаза, роста, раздражимости и других процессов требу­ется перенос веществ через мембрану - мембранный транс­порт (рис. 2.25). В настоящее время транспорт веществ через мембрану клетки делят на активный, пассивный, эндо- и экзоцитоз.

Пассивный транспорт - это вид транспорта, который происходит без затраты энергии от большей концентрации к меньшей. Растворимые в липидах небольшие неполярные молекулы (0 2 , С0 2) легко проникают в клетку путем простой диффузии. Нерастворимые же в липидах, в том числе заря­женные небольшие частицы, подхватываются белками-пере- носчиками или проходят через специальные каналы (глюкоза, аминокислоты, К + , РО 4 3-). Такой вид пассивного транспорта называется облегченной диффузией. Вода поступает в клеткучерез поры в липидной фазе, а также по специальным каналам, выстланным белками. Транспорт воды через мембрану называется осмосом (рис. 2.26).

Осмос имеет чрезвычайно важное значение в жизни клетки, так как если ее поместить в рас­твор с более высокой концентрацией солей, чем в клеточном растворе, то вода начнет выходить из клетки, и объем живого содержимого начнет уменьшаться. У животных клеток происходит съе­живание клетки в целом, а у растительных - отставание цитоплазмы от клеточной стенки, кото­рое называется плазмолизом (рис. 2.27).

При помещении клетки в менее концентрированный, чем цитоплазма, раствор, транспорт воды происходит в обратном направлении - в клетку. Однако существуют пределы растяжимости цитоплазматической мембраны, и животная клетка в конце концов разрывается, а у растительной этого не позволяет сделать прочная клеточная стенка. Яв­ление заполнения клеточным содержимым всего внутреннего пространства клетки называется деплазмолизом. Внутриклеточную концентрацию солей следует учитывать при приготовлении лекарственных препаратов, особенно для внутривенного введения, так как это может приводить к повреждению клеток крови (для этого используют физиологический раствор с концентрацией 0,9 % хлорида натрия). Это не менее важно при культивировании клеток и тканей, а также орга­нов животных и растений.

Активный транспорт протекает с затратой энергии АТФ от меньшей концентрации вещества к большей. Он осуществляется с помощью специальных белков-насосов. Белки перекачивают че­рез мембрану ионы К + , Na + , Са 2+ и другие, что способствует транспорту важнейших органических веществ, а также возникновению нервных импульсов и т. д.

Эндоцитоз - это активный процесс поглощения веществ клеткой, при котором мембрана об­разует впячивания, а затем формирует мембранные пузырьки - фагосомы, в которых заключены поглощаемые объекты. Затем с фагосомой сливается первичная лизосома, и образуется вторичная лизосома, или фаголизосома, или пищеварительная вакуоль. Содержимое пузырька расщепля­ется ферментами лизосом, а продукты расщепления поглощаются и усваиваются клеткой. Непереваренные остатки удаляются из клетки путем экзоцитоза. Различают два основных вида эндоци- тоза: фагоцитоз и пиноцитоз.

Фагоцитоз - это процесс захвата клеточной поверхностью и поглощения клеткой твердых частиц, а пиноцитоз - жидко­сти. Фагоцитоз протекает в основном в животных клетках (одно­клеточные животные, лейкоциты человека), он обеспечивает их питание, а часто и защиту организма (рис. 2.28).

Путем пиноцитоза происходит поглощение белков, комплексов антиген-антитела в процессе иммунных реакций и т. д. Однако путем пиноцитоза или фагоцитоза в клетку также попадают многие вирусы. В клет­ках растений и грибов фагоцитоз практически невозможен, так они окружены прочными клеточными оболочками.

Экзоцитоз - процесс, обратный эндоцитозу. Таким образом выделяются непереваренные остатки пищи из пищеварительных вакуолей, выводятся необходимые для жизнедеятельности клетки и организма в целом вещества. Например, передача нервных импульсов происходит благо­даря выделению посылающим импульс нейроном химических посредников - медиаторов, а в растительных клетках так выделяются вспомогательные углеводы клеточной оболочки.

Клеточные оболочки клеток растений, грибов и бак­терий. Снаружи от мембраны клетка может выделять прочный каркас - клеточную оболочку, или клеточ­ную стенку.

У растений основу клеточной оболочки составляет целлюлоза, упакованная в пучки по 50-100 молекул. Промежутки между ними заполняют вода и другие углеводы. Оболочка растительной клетки пронизана каналами - плазмодесмами (рис. 2.29), через которые проходят мембраны эндоплазматической сети.

По плазмодесмам осуществляется транспорт веществ между клетками. Однако транспорт веществ, например воды, может происходить и по самим клеточным стенкам. Со временем в клеточной оболочке расте­ний накапливаются различные вещества, в том числе дубильные или жироподобные, что приво­дит к одревеснению или опробковению самой клеточной стенки, вытеснению воды и отмиранию клеточного содержимого. Между клеточными стенками соседних клеток растений располагаются желеобразные прокладки - срединные пластинки, которые скрепляют их между собой и це­ментируют тело растения в целом. Они разрушаются только в процессе созревания плодов и при опадании листьев.

Клеточные стенки клеток грибов образованы хитином - углеводом, содержащим азот. Они достаточно прочны и являются внешним скелетом клетки, но все же, как и у растений, препят­ствуют фагоцитозу.

У бактерий в состав клеточной стенки входит углевод с фрагментами пептидов - муреин, од­нако его содержание существенно различается у разных групп бактерий. Кнаружи от клеточной стенки могут выделяться также иные полисахариды, образующие слизистую капсулу, защищаю­щую бактерии от внешних воздействий.

Оболочка определяет форму клетки, служит механической опорой, выполняет защитную функцию, обеспечивает осмотические свойства клетки, ограничивая растяжение живого содер­жимого и предотвращая разрыв клетки, увеличивающейся вследствие поступления воды. Кроме того, клеточную стенку преодолевают вода и растворенные в ней вещества, прежде чем попасть в цитоплазму или, наоборот, при выходе из нее, при этом по клеточным стенкам вода транспор­тируется быстрее, чем по цитоплазме.

9.5.1. Одна из главных функций мембран - участие в переносе веществ. Этот процесс обеспечивается при помощи трёх основных механизмов: простой диффузией, облегчённой диффузией и активным транспортом (рисунок 9.10). Запомните важнейшие особенности этих механизмов и примеры транспортируемых веществ в каждом случае.

Рисунок 9.10. Механизмы транспорта молекул через мембрану

Простая диффузия - перенос веществ через мембрану без участия специальных механизмов. Транспорт происходит по градиенту концентрации без затраты энергии. Путём простой диффузии транспортируются малые биомолекулы - Н2 О, СО2 , О2 , мочевина, гидрофобные низкомолекулярные вещества. Скорость простой диффузии пропорциональна градиенту концентрации.

Облегчённая диффузия - перенос веществ через мембрану при помощи белковых каналов или специальных белков-переносчиков. Осуществляется по градиенту концентрации без затраты энергии. Транспортируются моносахариды, аминокислоты, нуклеотиды, глицерол, некоторые ионы. Характерна кинетика насыщения - при определённой (насыщающей) концентрации переносимого вещества в переносе принимают участие все молекулы переносчика и скорость транспорта достигает предельной величины.

Активный транспорт - также требует участия специальных белков-переносчиков, но перенос происходит против градиента концентрации и поэтому требует затраты энергии. При помощи этого механизма через клеточную мембрану транспортируются ионы Na+ , K+ , Ca2+ , Mg2+ , через митохондриальную - протоны. Для активного транспорта веществ характерна кинетика насыщения.

9.5.2. Примером транспортной системы, осуществляющей активный транспорт ионов, является Na+ ,K+ -аденозинтрифосфатаза (Na+ ,K+ -АТФаза или Na+ ,K+ -насос). Этот белок находится в толще плазматической мембраны и способен катализировать реакцию гидролиза АТФ. Энергия, выделяемая при гидролизе 1 молекулы АТФ, используется для переноса 3 ионов Na+ из клетки во внеклеточное пространство и 2 ионов К+ в обратном направлении (рисунок 9.11). В результате действия Na+ ,K+ -АТФазы создаётся разность концентраций между цитозолем клетки и внеклеточной жидкостью. Поскольку перенос ионов неэквивалентен, то возникает разность электрических потенциалов. Таким образом, возникает электрохимический потенциал, который складывается из энергии разности электрических потенциалов Δφ и энергии разности концентраций веществ ΔС по обе стороны мембраны.

Рисунок 9.11. Схема Na+ , K+ -насоса.

9.5.3. Перенос через мембраны частиц и высокомолекулярных соединений

Наряду с транспортом органических веществ и ионов, осуществляемым переносчиками, в клетке существует совершенно особый механизм, предназначенный для поглощения клеткой и выведения из неё высокомолекулярных соединений при помощи изменения формы биомембраны. Такой механизм называют везикулярным транспортом .

Рисунок 9.12. Типы везикулярного транспорта: 1 - эндоцитоз; 2 - экзоцитоз.

При переносе макромолекул происходит последовательное образование и слияние окружённых мембраной пузырьков (везикул). По направлению транспорта и характеру переносимых веществ различают следующие типы везикулярного транспорта:

Эндоцитоз (рисунок 9.12, 1) — перенос веществ в клетку. В зависимости от размера образующихся везикул различают:

а) пиноцитоз — поглощение жидкости и растворённых макромолекул (белков, полисахаридов, нуклеиновых кислот) с помощью небольших пузырьков (150 нм в диаметре);

б) фагоцитоз — поглощение крупных частиц, таких, как микроорганизмы или обломки клеток. В этом случае образуются крупные пузырьки, называемые фагосомами диаметром более 250 нм.

Пиноцитоз характерен для большинства эукариотических клеток, в то время как крупные частицы поглощаются специализированными клетками - лейкоцитами и макрофагами. На первой стадии эндоцитоза вещества или частицы адсорбируются на поверхности мембраны, этот процесс происходит без затраты энергии. На следующей стадии мембрана с адсорбированным веществом углубляется в цитоплазму; образовавшиеся локальные впячивания плазматической мембраны отшнуровываются от поверхности клетки, образуя пузырьки, которые затем мигрируют внутрь клетки. Этот процесс связан системой микрофиламентов и является энергозависимым. Поступившие в клетку пузырьки и фагосомы могут сливаться с лизосомами. Содержащиеся в лизосомах ферменты расщепляют вещества, содержащиеся в пузырьках и фагосомах до низкомолекулярных продуктов (аминокислот, моносахаридов, нуклеотидов), которые транспортируются в цитозоль, где они могут быть использованы клеткой.

Экзоцитоз (рисунок 9.12, 2) — перенос частиц и крупных соединений из клетки. Этот процесс, как и эндоцитоз, протекает с поглощением энергии. Основными разновидностями экзоцитоза являются:

а) секреция - выведение из клетки водорастворимых соединений, которые используются или воздействуют на другие клетки организма. Может осуществляться как неспециализированными клетками, так и клетками эндокринных желёз, слизистой желудочно-кишечного тракта, приспособленными для секреции производимых ими веществ (гормонов, нейромедиаторов, проферментов) в зависимости от определённых потребностей организма.

Секретируемые белки синтезируются на рибосомах, связанных с мембранами шероховатого эндоплазматического ретикулума. Затем эти белки транспортируются к аппарату Гольджи, где они модифицируются, концентрируются, сортируются, и затем упаковываются в пузырьки, которые отщепляются в цитозоль и в дальнейшем сливаются с плазматической мембраной, так что содержимое пузырьков оказывается вне клетки.

В отличие от макромолекул, секретируемые частицы малых размеров, например, протоны, транспортируются из клетки при помощи механизмов облегчённой диффузии и активного транспорта.

б) экскреция - удаление из клетки веществ, которые не могут быть использованы (например, удаление в ходе эритропоэза из ретикулоцитов сетчатой субстанции, представляющей собой агрегированные остатки органелл). Механизм экскреции, по-видимому, состоит в том, что вначале выделяемые частицы оказываются в цитоплазматическом пузырьке, который затем сливается с плазматической мембраной.


Мембраны биологические.

Термин "мембрана"(лат. membrana - кожица, пленка) начали использовать более 100 лет назад для обозначения клеточной границы, служащей, с одной стороны, барьером между содержимым клетки и внешней средой, а с другой - полупроницаемой перегородкой, через которую могут проходить вода и некоторые вещества. Однако этим функции мембраны не исчерпываются, поскольку биологические мембраны составляют основу структурной организации клетки.
Строение мембраны. Со гласно этой модели основной мембраны является липидный бислой, в котором гидрофобные хвосты молекул обращены внутрь, а гидрофильные головки-наружу. Липиды представлены фосфолипидпми - производными глицерина или сфингозина. С липидным слоем связаны белки. Интегральные(транмембраные) белки пронизывают мембрану насквозь и прочно с ней связаны; переферические не пронизывают и связаны с мембраной менее прочно. Функции мембраных белков: поддержание структуры мембран, получение и преобразование сигналов из окр. среды, транспорт некоторых веществ, катализ реакций, происходящих на мембранах. толщина мембраны составляет от 6 до 10 нм.

Свойства мембраны:
1. Текучесть. Мембрана не представляет собой жесткую структуру- большая часть входящих в ее состав белков и липидов может перемещаться в плоскости мембран.
2. Асимметрия. Состав наружного и внутреннего слоев как белков, так и липидов различен. Кроме того, плазматические мембраны животных клеток снаружи имеют слой гликопротеинов (гликокаликс, выполняющий сигнальную и рецепторные функции, а также имеющий значение для объединения клеток в ткани)
3. Полярность. Внешняя сторона мембраны несет положительный заряд, а внутренняя-отрицательный.
4. Избирательная проницаемость. Мембраны живых клеток пропускают, помимо воды, лишь определенные молекулы и ионы растворенных веществ.(Использование по отношению к мембранам клеток термина "полупроницаемость" не совсем корректно, тк это понятие подразумевает то, что мембрана пропускает только молекулы растворителя, задерживая при этом все молекулы и ионы растворенных веществ.)

Наружная клеточная мембрана (плазмалемма) - ультрамикроскопическая пленка толщиной 7.5нм, состоящая из белков, фосфолипидов и воды. Эластичная пленка, хорошо смачвающася водой и быстро восстанавливающийся целостность после повреждения. Имеет универсальное строение, те типичное для всех биологических мембран. Пограничное положение этой мембраны, ее участие в процессах избирательной проницаемости, пиноцитозе, фагоцитозе, выведение продуктов выделения и синтез, во взаимосвязи с соседними клетками и защите клетки от повреждений делает ее роль исключительно важной. Животные клетки снаружи от мембраны иногда бывают покрыты тонким слоем,состоящим из полисахаридов и белков, - гликокаликсом. У растительных клеток снаружи от клеточной мембраны находится прочная, создающая внешнюю опору и поддерживающая форму клетки клеточная стенка. Она состоит из клетчатки (целлюлозы)-нерастворимого в воде полисахарида.

Клеточная мембрана – это структура, покрывающая клетку снаружи. Её так же называют цитолемма или плазмолемма.

Данное образование построено из билипидного слоя (бислоя) со встроенными в него белками. Углеводы, входящие в состав плазмолеммы, находятся в связанном состоянии.

Распределение основных компонентов плазмолеммы выглядит следующим образом: более половины химического состава приходится на белки, четверть занимают фосфолипиды, десятую часть – холестерол.

Клеточная мембрана и ее виды

Мембрана клетки – тонкая пленка, основу которой составляют пласты липопротеидов и белков.

По локализации выделяют мембранные органеллы, имеющие некоторые особенности в растительных и животных клетках:

  • митохондрии;
  • ядро;
  • эндоплазматический ретикулум;
  • комплекс Гольджи;
  • лизосомы;
  • хлоропласты (в растительных клетках).

Также есть внутренняя и наружная (плазмолемма) клеточная мембрана.

Строение клеточной мембраны

Клеточная мембрана содержит углеводы, которые покрывают ее, в виде гликокаликса. Это надмембранная структура, которая выполняет барьерную функцию. Белки, расположенные здесь, находятся в свободном состоянии. Несвязанные протеины участвуют в ферментативных реакциях, обеспечивая внеклеточное расщепление веществ.

Белки цитоплазматической мембраны представлены гликопротеинами. По химическому составу выделяют протеины, включенные в липидный слой полностью (на всем протяжении), – интегральные белки. Также периферические, не достигающие одной из поверхностей плазмолеммы.

Первые функционируют как рецепторы, связываясь с нейромедиаторами, гормонами и другими веществами. Вставочные белки необходимы для построения ионных каналов, через которые осуществляется транспорт ионов, гидрофильных субстратов. Вторые являются ферментами, катализирующими внутриклеточные реакции.

Основные свойства плазматической мембраны

Липидный бислой препятствует проникновению воды. Липиды – гидрофобные соединения, представленные в клетке фосфолипидами. Фосфатная группа обращена наружу и состоит из двух слоев: наружного, направленного во внеклеточную среду, и внутреннего, отграничивающего внутриклеточное содержимое.

Водорастворимые участки носят название гидрофильных головок. Участки с жирной кислотой направлены внутрь клетки, в виде гидрофобных хвостов. Гидрофобная часть взаимодействует с соседними липидами, что обеспечивает прикрепление их друг к другу. Двойной слой обладает избирательной проницаемостью на разных участках.

Так, в середине мембрана непроницаема для глюкозы и мочевины, здесь свободно проходят гидрофобные вещества: диоксид углерода, кислород, алкоголь. Важное значение имеет холестерол, содержание последнего определяет вязкость плазмолеммы.

Функции наружной мембраны клетки

Характеристики функций кратко перечислены в таблице:

Функция мембраны Описание
Барьерная роль Плазмолемма выполняет защитную функцию, предохраняя содержимое клетки от воздействия чужеродных агентов. Благодаря особой организации белков, липидов, углеводов, обеспечивается полупроницаемость плазмолеммы.
Рецепторная функция Через клеточную мембрану происходит активация биологически активных веществ в процессе связывания с рецепторами. Так, иммунные реакции опосредуются через распознавание чужеродных агентов рецепторным аппаратом клеток, локализованным на клеточной мембране.
Транспортная функция Наличие пор в плазмолемме позволяет регулировать поступление веществ внутрь клетки. Процесс переноса протекает пассивно (без затрат энергии) для соединений с низкой молекулярной массой. Активный перенос связан с затратами энергии, высвобождающейся при расщеплении аденозинтрифосфота (АТФ). Данный способ имеет место для переноса органических соединений.
Участие в процессах пищеварения На клеточной мембране происходит осаждение веществ (сорбция). Рецепторы связываются субстратом, перемещая его внутрь клетки. Образуется пузырек, свободно лежащий внутри клетки. Сливаясь, такие пузырьки формируют лизосомы с гидролитическими ферментами.
Ферментативная функция Энзимы, необходимые составляющие внутриклеточного пищеварения. Реакции, требующие участия катализаторов, протекают с участием ферментов.

Какое значение имеет клеточная мембрана

Клеточная мембрана участвует в поддержании гомеостаза за счет высокой селективности поступающих и выходящих из клетки веществ (в биологии это носит название избирательной проницаемости).

Выросты плазмолеммы разделяют клетку на компартменты (отсеки), ответственные за выполнение определенных функций. Специфически устроенные мембраны, соответствующие жидкостно-мозаичной схеме, обеспечивают целостность клетки.